Individual competence predominates over host nutritional status in Arabidopsis root exudate-mediated bacterial enrichment in a combination of four Burkholderiaceae species.

Javier Ignacio Cillero, Pablo Andrés Henríquez, Thomas Warwick Ledger, Gonzalo Andrés Ruz, Bernardo González
Author Information
  1. Javier Ignacio Cillero: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2700, Santiago, Chile.
  2. Pablo Andrés Henríquez: Facultad de Economía y Empresa, Universidad Diego Portales, Santiago, Chile.
  3. Thomas Warwick Ledger: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2700, Santiago, Chile.
  4. Gonzalo Andrés Ruz: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2700, Santiago, Chile.
  5. Bernardo González: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2700, Santiago, Chile. bernardo.gonzalez@uai.cl.

Abstract

BACKGROUND: Rhizosphere microorganisms play a crucial role in plant health and development. Plant root exudates (PRE) are a complex mixture of organic molecules and provide nutritional and signaling information to rhizosphere microorganisms. Burkholderiaceae species are non-abundant in the rhizosphere but exhibit a wide range of plant-growth-promoting and plant-health-protection effects. Most of these plant-associated microorganisms have been studied in isolation under laboratory conditions, whereas in nature, they interact in competition or cooperation with each other. To improve our understanding of the factors driving growth dynamics of low-abundant bacterial species in the rhizosphere, we hypothesized that the growth and survival of four Burkholderiaceae strains (Paraburkholderia phytofirmans PsJN, Cupriavidus metallidurans CH34, C. pinatubonensis JMP134 and C. taiwanensis LMG19424) in Arabidopsis thaliana PRE is affected by the presence of each other.
RESULTS: Differential growth abilities of each strain were found depending on plant age and whether PRE was obtained after growth on N limitation conditions. The best-adapted strain to grow in PRE was P. phytofirmans PsJN, with C. pinatubonensis JMP134 growing better than the other two Cupriavidus strains. Individual strain behavior changed when they succeeded in combinations. Clustering analysis showed that the 4-member co-culture grouped with one of the best-adapted strains, either P. phytofirmans PsJN or C. pinatubonensis JMP134, depending on the PRE used. Sequential transference experiments showed that the behavior of the 4-member co-culture relies on the type of PRE provided for growth.
CONCLUSIONS: The results suggest that individual strain behavior changed when they grew in combinations of two, three, or four members, and those changes are determined first by the inherent characteristics of each strain and secondly by the environment.

Keywords

References

  1. Curr Opin Biotechnol. 2015 Dec;36:40-9 [PMID: 26319893]
  2. Front Microbiol. 2018 May 29;9:1074 [PMID: 29896167]
  3. Nature. 2015 Dec 17;528(7582):364-9 [PMID: 26633631]
  4. PLoS One. 2013;8(2):e55731 [PMID: 23383346]
  5. Mol Plant Microbe Interact. 2017 Mar;30(3):215-230 [PMID: 28118091]
  6. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9110-4 [PMID: 10890915]
  7. Trends Plant Sci. 2018 Jan;23(1):25-41 [PMID: 29050989]
  8. Curr Microbiol. 2018 Aug;75(8):961-965 [PMID: 29516180]
  9. Mol Plant Microbe Interact. 2013 May;26(5):546-53 [PMID: 23301615]
  10. Nat Commun. 2022 Feb 11;13(1):836 [PMID: 35149704]
  11. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5213-E5222 [PMID: 29686086]
  12. Plant Physiol. 2011 Nov;157(3):1255-82 [PMID: 21900481]
  13. Microbiome. 2019 Jun 3;7(1):85 [PMID: 31159875]
  14. Biochem J. 2019 Oct 15;476(19):2705-2724 [PMID: 31654057]
  15. mSystems. 2021 Dec 21;6(6):e0112521 [PMID: 34846165]
  16. PLoS One. 2013 Jul 15;8(7):e69435 [PMID: 23869243]
  17. PeerJ. 2021 May 14;9:e11373 [PMID: 34040892]
  18. Anal Biochem. 2005 Apr 1;339(1):69-72 [PMID: 15766712]
  19. Nat Rev Microbiol. 2013 Nov;11(11):789-99 [PMID: 24056930]
  20. ISME J. 2017 Apr;11(4):853-862 [PMID: 28072420]
  21. Appl Environ Microbiol. 2016 Dec 15;83(1): [PMID: 27795307]
  22. Microbiol Res. 2018 Mar;207:100-107 [PMID: 29458844]
  23. Annu Rev Microbiol. 2020 Sep 8;74:81-100 [PMID: 32530732]
  24. Environ Microbiol. 2012 May;14(5):1091-117 [PMID: 22026719]
  25. Trends Plant Sci. 2004 Jan;9(1):26-32 [PMID: 14729216]
  26. Arch Microbiol. 1974;99(1):61-70 [PMID: 4852581]
  27. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  28. J Exp Bot. 2009;60(6):1729-42 [PMID: 19342429]
  29. Front Microbiol. 2016 Nov 17;7:1838 [PMID: 27909432]
  30. Nat Microbiol. 2018 Apr;3(4):470-480 [PMID: 29556109]
  31. Nature. 2012 Aug 2;488(7409):91-5 [PMID: 22859207]
  32. PLoS Biol. 2016 Jan 20;14(1):e1002352 [PMID: 26788878]
  33. PLoS One. 2010 May 05;5(5):e10433 [PMID: 20463976]
  34. Antonie Van Leeuwenhoek. 2012 May;101(4):713-23 [PMID: 22186997]
  35. Annu Rev Plant Biol. 2006;57:233-66 [PMID: 16669762]
  36. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  37. Curr Opin Microbiol. 2014 Apr;18:72-7 [PMID: 24632350]
  38. J Biol Chem. 2013 Feb 15;288(7):4502-12 [PMID: 23293028]
  39. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]
  40. PeerJ. 2020 Jul 28;8:e9600 [PMID: 33240578]

MeSH Term

Arabidopsis
Burkholderia
Burkholderiaceae
Complex Mixtures
Exudates and Transudates
Nutritional Status
Plants

Chemicals

Complex Mixtures

Word Cloud

Created with Highcharts 10.0.0PREgrowthstrainBurkholderiaceaeCmicroorganismsrhizospherespeciesfourstrainsphytofirmansPsJNpinatubonensisJMP134ArabidopsisbehaviorplantrootexudatesnutritionalconditionsbacterialCupriavidusdependingbest-adaptedPtwoIndividualchangedcombinationsshowed4-memberco-cultureBACKGROUND:RhizosphereplaycrucialrolehealthdevelopmentPlantcomplexmixtureorganicmoleculesprovidesignalinginformationnon-abundantexhibitwiderangeplant-growth-promotingplant-health-protectioneffectsplant-associatedstudiedisolationlaboratorywhereasnatureinteractcompetitioncooperationimproveunderstandingfactorsdrivingdynamicslow-abundanthypothesizedsurvivalParaburkholderiametalliduransCH34taiwanensisLMG19424thalianaaffectedpresenceotherRESULTS:DifferentialabilitiesfoundagewhetherobtainedNlimitationgrowgrowingbettersucceededClusteringanalysisgroupedoneeitherusedSequentialtransferenceexperimentsreliestypeprovidedCONCLUSIONS:resultssuggestindividualgrewthreememberschangesdeterminedfirstinherentcharacteristicssecondlyenvironmentcompetencepredominateshoststatusexudate-mediatedenrichmentcombinationBacterialCo-cultureRoot

Similar Articles

Cited By