CTCF DNA-binding domain undergoes dynamic and selective protein-protein interactions.

Rong Zhou, Kai Tian, Jie Huang, Wenjia Duan, Hongye Fu, Ying Feng, Hui Wang, Yongpeng Jiang, Yuanjun Li, Rui Wang, Jiazhi Hu, Hanhui Ma, Zhi Qi, Xiong Ji
Author Information
  1. Rong Zhou: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  2. Kai Tian: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  3. Jie Huang: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  4. Wenjia Duan: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  5. Hongye Fu: Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
  6. Ying Feng: School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  7. Hui Wang: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  8. Yongpeng Jiang: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  9. Yuanjun Li: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  10. Rui Wang: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  11. Jiazhi Hu: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  12. Hanhui Ma: School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  13. Zhi Qi: Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
  14. Xiong Ji: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.

Abstract

CTCF is a predominant insulator protein required for three-dimensional chromatin organization. However, the roles of its insulation of enhancers in a 3D nuclear organization have not been fully explained. Here, we found that the CTCF DNA-binding domain (DBD) forms dynamic self-interacting clusters. Strikingly, CTCF DBD clusters were found to incorporate other insulator proteins but are not coenriched with transcriptional activators in the nucleus. This property is not observed in other domains of CTCF or the DBDs of other transcription factors. Moreover, endogenous CTCF shows a phenotype consistent with the DBD by forming small protein clusters and interacting with CTCF motif arrays that have fewer transcriptional activators bound. Our results reveal an interesting phenomenon in which CTCF DBD interacts with insulator proteins and selectively localizes to nuclear positions with lower concentrations of transcriptional activators, providing insights into the insulation function of CTCF.

Keywords

References

  1. Nucleic Acids Res. 2018 Jan 4;46(D1):D1284 [PMID: 29161433]
  2. Nucleic Acids Res. 2004 Sep 15;32(16):4903-19 [PMID: 15371553]
  3. Elife. 2019 Jun 17;8: [PMID: 31204999]
  4. Mol Cell. 2019 Nov 7;76(3):395-411.e13 [PMID: 31522987]
  5. Mol Cell Biol. 2007 Mar;27(5):1631-48 [PMID: 17210645]
  6. Trends Genet. 2015 Nov;31(11):651-660 [PMID: 26439501]
  7. Methods. 2016 Aug 1;105:62-74 [PMID: 27038747]
  8. Mol Cell. 2004 Jan 30;13(2):291-8 [PMID: 14759373]
  9. Genome Biol. 2020 Jul 2;21(1):158 [PMID: 32616013]
  10. Nature. 2019 Dec;576(7785):158-162 [PMID: 31776509]
  11. Cell Rep. 2018 Apr 10;23(2):349-360 [PMID: 29641996]
  12. Bioinformatics. 2015 Feb 1;31(3):324-31 [PMID: 25294922]
  13. Nat Struct Mol Biol. 2021 Feb;28(2):152-161 [PMID: 33398174]
  14. Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947 [PMID: 30371878]
  15. J Cell Sci. 2009 May 1;122(Pt 9):1275-84 [PMID: 19386894]
  16. J Mol Biol. 2020 Feb 7;432(3):643-652 [PMID: 31887284]
  17. Cell Rep. 2013 May 30;3(5):1678-1689 [PMID: 23707059]
  18. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  19. Genes Dev. 2016 Oct 15;30(20):2253-2258 [PMID: 27807035]
  20. Nature. 2017 Jul 13;547(7662):241-245 [PMID: 28636597]
  21. Nature. 2016 Jan 7;529(7584):110-4 [PMID: 26700815]
  22. Trends Genet. 2014 May;30(5):161-71 [PMID: 24786278]
  23. Plant Methods. 2007 Sep 24;3:11 [PMID: 17892552]
  24. Cell. 2015 Aug 13;162(4):900-10 [PMID: 26276636]
  25. Development. 2012 Mar;139(6):1045-57 [PMID: 22354838]
  26. Nat Rev Genet. 2014 Apr;15(4):234-46 [PMID: 24614316]
  27. Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10912-10917 [PMID: 28973861]
  28. Genes Dev. 2009 Sep 15;23(18):2124-33 [PMID: 19759261]
  29. Mol Cell. 2017 Apr 6;66(1):102-116.e7 [PMID: 28388437]
  30. Nat Genet. 2021 Jul;53(7):1064-1074 [PMID: 34002095]
  31. Cell. 2013 Dec 19;155(7):1479-91 [PMID: 24360272]
  32. EMBO Rep. 2015 Aug;16(8):1037-50 [PMID: 26136374]
  33. Mol Cell. 2018 May 17;70(4):730-744.e6 [PMID: 29706538]
  34. Science. 2016 Mar 25;351(6280):1450-1454 [PMID: 27013732]
  35. Nature. 2017 Jul 13;547(7662):236-240 [PMID: 28636604]
  36. Mol Cell. 2017 Jun 1;66(5):711-720.e3 [PMID: 28529057]
  37. Nat Rev Genet. 2010 Jun;11(6):439-46 [PMID: 20442713]
  38. Mol Cell. 2019 Nov 7;76(3):412-422.e5 [PMID: 31522988]
  39. Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2020-2031 [PMID: 31937660]
  40. Nat Methods. 2015 Mar;12(3):244-50, 3 p following 250 [PMID: 25599551]
  41. Cell Res. 2017 Nov;27(11):1365-1377 [PMID: 29076501]
  42. Elife. 2019 Jun 17;8: [PMID: 31205001]
  43. Science. 2012 Nov 16;338(6109):891-2 [PMID: 23161983]
  44. Mol Cell. 2019 Jan 17;73(2):250-263.e5 [PMID: 30527662]
  45. Science. 2009 Jun 26;324(5935):1729-32 [PMID: 19460965]
  46. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3002-7 [PMID: 25713381]
  47. Science. 2016 Mar 25;351(6280):1454-1458 [PMID: 26940867]
  48. Cell. 2013 Mar 14;152(6):1285-97 [PMID: 23498937]
  49. Cell. 2017 Jan 12;168(1-2):159-171.e14 [PMID: 28041848]
  50. Cytometry A. 2017 Aug;91(8):810-814 [PMID: 28727252]
  51. Science. 2017 Sep 22;357(6357): [PMID: 28935776]
  52. Cell. 2016 Jul 28;166(3):538-554 [PMID: 27471964]
  53. Mol Cell. 2006 Sep 1;23(5):733-42 [PMID: 16949368]
  54. Nat Cell Biol. 2019 Nov;21(11):1393-1402 [PMID: 31685986]
  55. Nat Commun. 2020 Nov 5;11(1):5612 [PMID: 33154377]
  56. Cell. 2017 May 18;169(5):930-944.e22 [PMID: 28525758]
  57. Cell. 2014 Oct 9;159(2):374-387 [PMID: 25303531]
  58. Cell Stem Cell. 2016 Feb 4;18(2):262-75 [PMID: 26686465]
  59. Angew Chem Int Ed Engl. 2019 Apr 1;58(15):4858-4862 [PMID: 30762296]
  60. Cell. 2019 Jan 24;176(3):419-434 [PMID: 30682370]
  61. Nature. 2020 Feb;578(7795):472-476 [PMID: 31905366]
  62. Cell. 2018 Nov 15;175(5):1405-1417.e14 [PMID: 30318144]
  63. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20398-403 [PMID: 19074263]
  64. Cell. 2013 Apr 11;153(2):307-19 [PMID: 23582322]
  65. Genes Dev. 2010 Nov 15;24(22):2543-55 [PMID: 20966046]
  66. Nat Biotechnol. 2016 May;34(5):528-30 [PMID: 27088723]
  67. Science. 2018 Jul 27;361(6400): [PMID: 29930090]
  68. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  69. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  70. Nat Rev Genet. 2012 Sep;13(9):613-26 [PMID: 22868264]
  71. Cell. 2016 Nov 17;167(5):1188-1200 [PMID: 27863240]
  72. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  73. Cell Rep. 2015 Sep 8;12(10):1704-14 [PMID: 26321640]
  74. Genes Dev. 2014 Apr 1;28(7):723-34 [PMID: 24696455]
  75. Genes Dev. 2016 Apr 15;30(8):881-91 [PMID: 27083996]
  76. Trends Genet. 2001 Sep;17(9):520-7 [PMID: 11525835]
  77. Genome Res. 2019 Feb;29(2):236-249 [PMID: 30655336]
  78. Genes Dev. 2019 Dec 1;33(23-24):1619-1634 [PMID: 31594803]
  79. Nat Chem Biol. 2020 Mar;16(3):257-266 [PMID: 31792445]
  80. EMBO J. 2005 Sep 21;24(18):3291-300 [PMID: 16107875]
  81. Mol Cell. 2015 Jan 22;57(2):361-75 [PMID: 25578877]
  82. Nat Cell Biol. 2021 Aug;23(8):881-893 [PMID: 34326481]
  83. Nature. 2011 Nov 3;479(7371):74-9 [PMID: 21964334]
  84. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6883-8 [PMID: 12011446]
  85. Science. 2018 Aug 17;361(6403):704-709 [PMID: 29976794]
  86. Nucleic Acids Res. 2019 Sep 26;47(17):9160-9179 [PMID: 31340001]
  87. Cell. 2014 Mar 27;157(1):13-25 [PMID: 24679523]
  88. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  89. Cell. 1999 Aug 6;98(3):387-96 [PMID: 10458613]
  90. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):996-1001 [PMID: 24335803]
  91. Cell. 2018 Feb 8;172(4):650-665 [PMID: 29425488]
  92. Science. 2013 Nov 22;342(6161):948-53 [PMID: 24200812]

Word Cloud

Created with Highcharts 10.0.0CTCFDBDinsulatorclusterstranscriptionalactivatorsproteinorganizationinsulationnuclearfoundDNA-bindingdomaindynamicproteinsMolecularpredominantrequiredthree-dimensionalchromatinHoweverrolesenhancers3Dfullyexplainedformsself-interactingStrikinglyincorporatecoenrichednucleuspropertyobserveddomainsDBDstranscriptionfactorsMoreoverendogenousshowsphenotypeconsistentformingsmallinteractingmotifarraysfewerboundresultsrevealinterestingphenomenoninteractsselectivelylocalizespositionslowerconcentrationsprovidinginsightsfunctionundergoesselectiveprotein-proteininteractionsBiologicalsciencesbiologyinteraction

Similar Articles

Cited By