Metabarcoding of harmful algal bloom species in sediments from four coastal areas of the southeast China.

Zhaohui Wang, Liang Peng, Changliang Xie, Wenting Wang, Yuning Zhang, Lijuan Xiao, Yali Tang, Yufeng Yang
Author Information
  1. Zhaohui Wang: College of Life Science and Technology, Jinan University, Guangzhou, China.
  2. Liang Peng: College of Life Science and Technology, Jinan University, Guangzhou, China.
  3. Changliang Xie: College of Life Science and Technology, Jinan University, Guangzhou, China.
  4. Wenting Wang: College of Life Science and Technology, Jinan University, Guangzhou, China.
  5. Yuning Zhang: College of Life Science and Technology, Jinan University, Guangzhou, China.
  6. Lijuan Xiao: College of Life Science and Technology, Jinan University, Guangzhou, China.
  7. Yali Tang: College of Life Science and Technology, Jinan University, Guangzhou, China.
  8. Yufeng Yang: College of Life Science and Technology, Jinan University, Guangzhou, China.

Abstract

In the past three decades, harmful algal blooms (HAB) have become more frequent and widespread in southeast Chinese sea areas. Resting stages are regarded as the "seed bank" of algal blooms, and play an important role in initiating HABs. The distribution of resting stages in sediments especially those of HAB species can make good predictions about the potential risk of future blooms, however with limited reports. In this study, surface sediment samples were collected in the four sea areas along the southeast Chinese coasts, including Dafeng Port (DF) in the southern Yellow Sea, Xiangshan Bay (XS), Funing Bay (FN), and Dongshan Bay (DS) in the East China Sea. Diversity and community structure of eukaryotic microalgae in surface sediments were assessed by metabarcoding V4 region of the 18S rDNA, focusing on the distribution of HAB species. Biogenic elements including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), biogenic silicon (BSi), and moisture content (MC) were analyzed. A total of 454 eukaryotic algal OTUs were detected, which belonged to 31 classes of 9 phyla. Altogether 149 algal species were detected in this study, and 59 taxa have been reported to form resting stages. Eukaryotic algal community was similar in XS, FN and DS of the East China Sea, which were predominated by dinoflagellates. However, algal community was different in DF of the Yellow Sea, and characterized by the dominance of chrysophytes and low OTU richness. The distribution of most abundant HAB species showed positive correlations with TN, BSi, and TOC, suggesting that eutrophication and consequent increase in diatom productivity may have a significant influence on the distribution of HAB species and facilitate the occurrence of HABs. Furthermore, HAB species occurred more abundantly and widely in FN. Our results suggest high potential risks of HABs in the southeast Chinese coast especially in Funing Bay.

Keywords

References

  1. Mol Ecol. 2015 Jun;24(12):3026-42 [PMID: 25893259]
  2. Protist. 2009 Aug;160(3):452-79 [PMID: 19523874]
  3. Cytometry. 1989 Sep;10(5):629-35 [PMID: 2505987]
  4. Microorganisms. 2019 Aug 09;7(8): [PMID: 31405065]
  5. Mar Genomics. 2017 Dec;36:49-55 [PMID: 28625778]
  6. J Phycol. 2013 Dec;49(6):1084-94 [PMID: 27007629]
  7. Toxicon. 2012 Oct;60(5):830-9 [PMID: 22643573]
  8. Harmful Algae. 2020 Mar;93:101788 [PMID: 32307071]
  9. PLoS One. 2013 Aug 19;8(8):e71346 [PMID: 23990946]
  10. Mar Pollut Bull. 2020 May;154:111102 [PMID: 32319925]
  11. Environ Res. 2023 Jan 1;216(Pt 2):114584 [PMID: 36270532]
  12. Microorganisms. 2014 Jan 03;2(1):11-32 [PMID: 27694774]
  13. Harmful Algae. 2021 Jul;107:102050 [PMID: 34456016]
  14. Nat Rev Microbiol. 2015 Apr;13(4):217-29 [PMID: 25730701]
  15. Harmful Algae. 2016 May;55:56-65 [PMID: 28073547]
  16. Deep Sea Res 2 Top Stud Oceanogr. 2014 May 1;103:6-26 [PMID: 25018592]
  17. J Hazard Mater. 2021 Sep 15;418:126285 [PMID: 34119973]
  18. Chemosphere. 2017 Sep;183:80-88 [PMID: 28535464]
  19. Mol Ecol. 2016 Sep;25(17):4392-406 [PMID: 27454455]
  20. Harmful Algae. 2019 Jan;81:65-76 [PMID: 30638500]
  21. Toxicon. 2021 Oct 15;201:37-45 [PMID: 34416253]
  22. ISME J. 2010 Sep;4(9):1144-53 [PMID: 20393574]
  23. Mol Ecol. 2019 Sep;28(17):4065-4076 [PMID: 31468654]
  24. Environ Microbiol. 2013 Jun;15(6):1745-58 [PMID: 23297806]
  25. Harmful Algae. 2020 Jun;96:101832 [PMID: 32560830]
  26. Harmful Algae. 2016 Jan;51:40-55 [PMID: 28003061]
  27. Harmful Algae. 2017 Mar;63:32-44 [PMID: 28366398]
  28. Harmful Algae. 2019 May;85:101626 [PMID: 31810531]
  29. Mol Ecol. 2015 Mar;24(6):1236-47 [PMID: 25690883]
  30. Harmful Algae. 2021 Feb;102:101992 [PMID: 33875180]
  31. Harmful Algae. 2021 Aug;108:102098 [PMID: 34588125]
  32. Harmful Algae. 2022 Jan;111:102059 [PMID: 35016757]
  33. Harmful Algae. 2020 Jan;91:101728 [PMID: 32057345]
  34. J Phycol. 2011 Apr;47(2):375-92 [PMID: 27021869]
  35. Harmful Algae. 2018 Mar;73:44-57 [PMID: 29602506]
  36. Biol Rev Camb Philos Soc. 2018 Feb;93(1):166-183 [PMID: 28474820]
  37. Protist. 2014 Aug;165(4):417-44 [PMID: 24908198]
  38. Harmful Algae. 2020 Nov;99:101922 [PMID: 33218446]
  39. Curr Biol. 2014 Apr 14;24(8):813-21 [PMID: 24704080]
  40. Res Microbiol. 2011 Jul-Aug;162(6):551-69 [PMID: 21514379]
  41. J Eukaryot Microbiol. 2019 May;66(3):494-513 [PMID: 30414334]

Word Cloud

Created with Highcharts 10.0.0algalspeciesHABSeasoutheaststagesdistributionBayChinatotalbloomsChineseareasHABsrestingsedimentsYellowFNEastcommunityeukaryoticharmfulseaespeciallypotentialstudysurfacefourincludingDFXSFuningDS18SrDNATOCTNBSidetectedpastthreedecadesbecomefrequentwidespreadRestingregarded"seedbank"playimportantroleinitiatingcanmakegoodpredictionsriskfuturehoweverlimitedreportssedimentsamplescollectedalongcoastsDafengPortsouthernXiangshanDongshanDiversitystructuremicroalgaeassessedmetabarcodingV4regionfocusingBiogenicelementsorganiccarbonnitrogenphosphorusTPbiogenicsiliconmoisturecontentMCanalyzed454OTUsbelonged31classes9phylaAltogether14959taxareportedformEukaryoticsimilarpredominateddinoflagellatesHoweverdifferentcharacterizeddominancechrysophyteslowOTUrichnessabundantshowedpositivecorrelationssuggestingeutrophicationconsequentincreasediatomproductivitymaysignificantinfluencefacilitateoccurrenceFurthermoreoccurredabundantlywidelyresultssuggesthighriskscoastMetabarcodingbloomcoastalalgaehumanactivities

Similar Articles

Cited By (1)