Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis.

Mid-Eum Park, Hyun Uk Kim
Author Information
  1. Mid-Eum Park: Department of Molecular Biology, Sejong University, Seoul, South Korea.
  2. Hyun Uk Kim: Department of Molecular Biology, Sejong University, Seoul, South Korea.

Abstract

Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.

Keywords

References

  1. Food Chem. 2021 Nov 1;361:130031 [PMID: 34058661]
  2. Plants (Basel). 2021 Nov 22;10(11): [PMID: 34834905]
  3. Arch Biochem Biophys. 2002 Jul 1;403(1):25-34 [PMID: 12061798]
  4. Plant J. 1999 Sep;19(6):645-53 [PMID: 10571850]
  5. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808-12 [PMID: 16593232]
  6. Plant Physiol. 2011 Oct;157(2):866-75 [PMID: 21825108]
  7. J Biol Chem. 1993 Aug 5;268(22):16345-51 [PMID: 8102138]
  8. Annu Rev Plant Biol. 2008;59:115-42 [PMID: 18444898]
  9. Plant Physiol. 1994 Dec;106(4):1443-1451 [PMID: 12232421]
  10. J Biol Chem. 2013 Dec 27;288(52):36902-14 [PMID: 24189065]
  11. Circulation. 2013 Apr 9;127(14):1512-21, 1521e1-18 [PMID: 23487436]
  12. Physiol Plant. 2020 Aug;169(4):612-624 [PMID: 32129896]
  13. Nature. 2016 May 19;533(7603):420-4 [PMID: 27096365]
  14. Front Plant Sci. 2022 Mar 23;13:863254 [PMID: 35401590]
  15. Indian J Med Res. 1995 Nov;102:241-4 [PMID: 8675245]
  16. Plant Biotechnol J. 2020 Sep;18(9):1845-1847 [PMID: 31985873]
  17. Plant Cell. 1995 Mar;7(3):359-71 [PMID: 7734968]
  18. Plant Physiol. 2009 May;150(1):308-19 [PMID: 19286937]
  19. Biochim Biophys Acta. 2006 Dec;1763(12):1413-26 [PMID: 17028011]
  20. Plant Physiol. 2016 Jan;170(1):163-79 [PMID: 26586834]
  21. Methods Mol Biol. 2012;861:123-37 [PMID: 22426716]
  22. Genome Biol. 2015 Jul 21;16:144 [PMID: 26193878]
  23. Nat Biotechnol. 2014 Apr;32(4):347-55 [PMID: 24584096]
  24. Front Plant Sci. 2020 Jul 08;11:1005 [PMID: 32774339]
  25. FEBS Lett. 2013 Aug 2;587(15):2371-6 [PMID: 23770095]
  26. Front Plant Sci. 2020 Apr 23;11:390 [PMID: 32425958]
  27. Plant Physiol Biochem. 2018 Oct;131:58-62 [PMID: 29735369]
  28. Metab Eng. 2017 Jan;39:237-246 [PMID: 27993560]
  29. Nat Commun. 2020 Jan 3;11(1):102 [PMID: 31900386]
  30. Plant Physiol. 2015 Sep;169(1):391-402 [PMID: 26152712]
  31. Plant J. 1997 Jul;12(1):121-31 [PMID: 9263455]
  32. Plant Biotechnol J. 2015 Dec;13(9):1346-59 [PMID: 25790072]
  33. Front Plant Sci. 2017 Oct 18;8:1789 [PMID: 29093726]
  34. Annu Rev Plant Biol. 2019 Apr 29;70:667-697 [PMID: 30835493]
  35. Plant Physiol. 2012 Oct;160(2):638-52 [PMID: 22864585]
  36. Plant Biotechnol J. 2013 Apr;11(3):355-61 [PMID: 23171303]
  37. Biosci Biotechnol Biochem. 2004 Jun;68(6):1175-84 [PMID: 15215578]
  38. Front Plant Sci. 2022 Jun 03;13:931310 [PMID: 35720575]
  39. Plant Direct. 2022 Apr 03;6(4):e395 [PMID: 35388372]
  40. Plant Biotechnol J. 2016 Sep;14(9):1883-98 [PMID: 26914183]
  41. Stem Cells Int. 2018 Jul 8;2018:7834175 [PMID: 30123293]
  42. J Biochem. 2012 Nov;152(5):387-95 [PMID: 22984005]
  43. J Biol Chem. 2012 Jan 20;287(4):2288-94 [PMID: 22090025]
  44. Arabidopsis Book. 2013;11:e0161 [PMID: 23505340]
  45. Biotechnol Biofuels. 2019 Jan 04;12:9 [PMID: 30622651]
  46. Biotechnol Biofuels. 2017 Nov 14;10:267 [PMID: 29163669]
  47. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13018-23 [PMID: 9789033]
  48. Plant Physiol. 1994 Sep;106(1):143-150 [PMID: 12232312]
  49. Plant J. 1998 Sep;15(6):755-64 [PMID: 9807814]
  50. Annu Rev Biophys. 2017 May 22;46:505-529 [PMID: 28375731]
  51. Funct Plant Biol. 2013 Oct;40(10):996-1004 [PMID: 32481168]
  52. Trends Biochem Sci. 2006 Dec;31(12):694-9 [PMID: 17079146]
  53. Plant Cell. 2005 Apr;17(4):1073-89 [PMID: 15772283]
  54. Sci Rep. 2018 Nov 22;8(1):17254 [PMID: 30467384]
  55. Cell Biochem Biophys. 2020 Dec;78(4):401-414 [PMID: 33034870]
  56. Plant Biotechnol J. 2014 Feb;12(2):231-9 [PMID: 24151938]
  57. Plant Cell Rep. 2014 Jul;33(7):1041-52 [PMID: 24585187]
  58. Front Plant Sci. 2019 Nov 12;10:1444 [PMID: 31781148]
  59. Nat Rev Mol Cell Biol. 2013 Jan;14(1):49-55 [PMID: 23169466]
  60. Int J Mol Sci. 2021 Apr 09;22(8): [PMID: 33918544]
  61. Plant Cell Physiol. 2018 Jul 1;59(7):1432-1442 [PMID: 29660088]
  62. Plant Cell. 1994 Jan;6(1):147-58 [PMID: 7907506]
  63. Front Plant Sci. 2021 Jan 21;11:599474 [PMID: 33552096]
  64. Plant Cell. 1992 Oct;4(10):1251-61 [PMID: 1359917]
  65. Front Plant Sci. 2022 Oct 04;13:962667 [PMID: 36267938]
  66. J Genet Eng Biotechnol. 2021 Jun 11;19(1):86 [PMID: 34115267]
  67. Prog Lipid Res. 2002 Mar;41(2):182-96 [PMID: 11755683]
  68. Planta. 2004 Jul;219(3):389-96 [PMID: 15014998]
  69. Mol Plant. 2021 Jun 7;14(6):997-1011 [PMID: 33741527]
  70. BMC Biotechnol. 2019 Apr 29;19(1):24 [PMID: 31035982]
  71. Plant Physiol Biochem. 2018 Oct;131:63-69 [PMID: 29753601]
  72. BMC Plant Biol. 2019 May 2;19(1):176 [PMID: 31046670]
  73. Plant Physiol. 1994 Dec;106(4):1609-1614 [PMID: 12232435]
  74. Sci Rep. 2019 Jun 20;9(1):8924 [PMID: 31222045]
  75. Plant Cell. 1995 Jul;7(7):957-70 [PMID: 7640528]
  76. Trends Plant Sci. 2004 May;9(5):229-35 [PMID: 15130548]
  77. J Biol Chem. 1992 Oct 15;267(29):20992-8 [PMID: 1328217]
  78. Front Plant Sci. 2021 Oct 26;12:748529 [PMID: 34764970]
  79. Curr Opin Plant Biol. 2020 Jun;55:66-73 [PMID: 32304939]
  80. Plant Biotechnol J. 2021 Mar;19(3):424-426 [PMID: 33131175]
  81. Biochem Soc Trans. 2000 Dec;28(6):703-5 [PMID: 11171177]
  82. Front Plant Sci. 2018 Jul 17;9:985 [PMID: 30065734]
  83. Curr Opin Plant Biol. 2014 Jun;19:68-75 [PMID: 24809765]
  84. Nature. 2017 Nov 23;551(7681):464-471 [PMID: 29160308]
  85. BMC Plant Biol. 2019 Jul 15;19(1):311 [PMID: 31307375]
  86. Plant Physiol. 2018 Mar;176(3):1894-1918 [PMID: 29269574]
  87. 3 Biotech. 2020 Jul;10(7):306 [PMID: 32566443]
  88. J Biol Chem. 2004 Oct 29;279(44):45540-5 [PMID: 15322116]
  89. Plant Physiol. 2012 Oct;160(2):1023-36 [PMID: 22879396]
  90. Plant Physiol. 2017 Feb;173(2):1211-1225 [PMID: 27932421]
  91. Int J Mol Sci. 2020 Feb 07;21(3): [PMID: 32046096]
  92. Plant Physiol. 1983 Nov;73(3):614-8 [PMID: 16663268]
  93. Plant Biotechnol J. 2020 Feb;18(2):313-315 [PMID: 31344313]
  94. BMC Plant Biol. 2020 May 25;20(1):233 [PMID: 32450806]
  95. Science. 2008 Aug 15;321(5891):960-4 [PMID: 18703739]
  96. J Agric Food Chem. 2019 Oct 16;67(41):11436-11443 [PMID: 31553599]
  97. Biotechnol Biofuels. 2014 Mar 08;7(1):36 [PMID: 24606605]
  98. Science. 2016 Sep 16;353(6305): [PMID: 27492474]
  99. Plants (Basel). 2020 Mar 21;9(3): [PMID: 32245281]
  100. Nat Biotechnol. 2015 Nov;33(11):1162-4 [PMID: 26479191]
  101. Plant Physiol. 2006 Feb;140(2):761-70 [PMID: 16384909]
  102. Signal Transduct Target Ther. 2020 Jan 3;5(1):1 [PMID: 32296011]
  103. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6487-92 [PMID: 10829075]
  104. Plant Biotechnol J. 2017 Jan;15(1):56-67 [PMID: 27307093]
  105. Plant Cell. 2013 Aug;25(8):3104-16 [PMID: 23995083]
  106. Theor Appl Genet. 2020 Aug;133(8):2401-2411 [PMID: 32448919]
  107. Front Plant Sci. 2019 Apr 05;10:362 [PMID: 31024579]
  108. Plant Biotechnol J. 2017 May;15(5):648-657 [PMID: 27862889]
  109. Plant Physiol. 2014 Apr 10;165(2):905-916 [PMID: 24722549]
  110. Food Chem. 2013 Aug 15;139(1-4):1133-45 [PMID: 23561219]
  111. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  112. Plant J. 2016 Jul;87(1):76-86 [PMID: 27483205]
  113. Annu Rev Plant Biol. 2016 Apr 29;67:179-206 [PMID: 26845499]
  114. Plant Biotechnol J. 2010 Apr;8(3):277-87 [PMID: 20051035]
  115. PLoS One. 2012;7(1):e30355 [PMID: 22279586]
  116. Plant Biotechnol J. 2017 Jun;15(6):729-739 [PMID: 27885771]
  117. Life Sci. 2018 Jun 15;203:255-267 [PMID: 29715470]
  118. Plant Cell Physiol. 2017 Jul 01;58(7):1260-1267 [PMID: 28444368]
  119. J Mol Biol. 2017 Jan 20;429(2):177-191 [PMID: 27916599]
  120. Front Plant Sci. 2021 Apr 22;12:652319 [PMID: 33968108]
  121. Plant Physiol Biochem. 2011 Feb;49(2):223-9 [PMID: 21215650]
  122. Biotechnol Biofuels. 2019 Sep 20;12:225 [PMID: 31548867]
  123. Nutrients. 2016 Jan 04;8(1): [PMID: 26742061]
  124. Plant Sci. 2022 Jun;319:111247 [PMID: 35487656]
  125. Nat Protoc. 2013 Nov;8(11):2281-2308 [PMID: 24157548]
  126. Plant J. 2009 Dec;60(6):933-47 [PMID: 19719479]
  127. Front Plant Sci. 2022 Apr 11;13:879642 [PMID: 35481139]
  128. Front Plant Sci. 2017 Feb 21;8:226 [PMID: 28270825]
  129. Front Plant Sci. 2021 Jun 29;12:702930 [PMID: 34267775]
  130. Plant Mol Biol. 2001 Aug;46(6):717-25 [PMID: 11575726]
  131. Plant Physiol. 2008 Oct;148(2):1042-54 [PMID: 18689444]
  132. New Phytol. 2018 Feb;217(3):1062-1076 [PMID: 29178188]
  133. Theor Appl Genet. 1990 Aug;80(2):234-40 [PMID: 24220901]
  134. PLoS One. 2011;6(12):e28086 [PMID: 22163277]
  135. BMC Genomics. 2015 Mar 07;16:157 [PMID: 25881128]
  136. Plant Physiol Biochem. 2018 Feb;123:1-7 [PMID: 29216494]
  137. Can J Diet Pract Res. 2012 Summer;73(2):98-101 [PMID: 22668846]
  138. Nat Commun. 2016 Aug 25;7:12617 [PMID: 27558837]
  139. Biotechnol Biofuels. 2019 Jun 29;12:172 [PMID: 31297160]
  140. Front Plant Sci. 2022 Feb 10;13:848723 [PMID: 35222498]
  141. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  142. J Mol Biol. 2016 Feb 27;428(5 Pt B):963-89 [PMID: 26506267]
  143. Curr Atheroscler Rep. 2010 Nov;12(6):384-90 [PMID: 20711693]
  144. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3570-5 [PMID: 25733849]
  145. BMC Biotechnol. 2019 Jan 28;19(1):9 [PMID: 30691438]
  146. Plant Biotechnol J. 2019 Apr;17(4):776-788 [PMID: 30230695]
  147. Nucleic Acids Res. 2005 Oct 26;33(18):5978-90 [PMID: 16251401]
  148. FEBS Lett. 2022 Aug;596(15):1865-1870 [PMID: 35490366]
  149. Plant Physiol. 2004 Mar;134(3):1206-16 [PMID: 14976237]
  150. Plants (Basel). 2020 Jul 09;9(7): [PMID: 32660049]
  151. Int J Mol Sci. 2021 Jan 14;22(2): [PMID: 33466786]
  152. Plant Cell. 2006 Mar;18(3):665-75 [PMID: 16473965]

Word Cloud

Created with Highcharts 10.0.0TAGFAplantsfattyacidoillipiddevelopmentplantmustvariousmetabolismlevelsCRISPR/Cas9Triacylglycerolneutralstructurethreemoleculesester-bondedonemoleculeglycerolimportantenergysourceseedgerminationseedlingDependingcompositionusededibleindustrialmaterialcosmeticssoaplubricantdemandrisingworldwideeithertypechangedtotalcontentincreasedreviewdiscussregulationClusteredregularlyinterspacedshortpalindromicrepeatsCRISPR/Cas9recentgenome-editingtechnologyapplicablehigheroleiclowerlong-chainacidsVLCFAsseedsdiscussedadditioncurrentstatusresearchacyltransferasesphospholipaseslipasessynthesisvegetativetissuesdescribedFinallystrategiesapplicationstudiesmentionedApplicationsprospectsgenomeeditingtriacylglycerolbiosynthesisFAD2FAE1FATBKASIacyltransferaselipase

Similar Articles

Cited By