Programmable Drug Release from a Dual-Stimuli Responsive Magnetic Metal-Organic Framework.

Muhammad Usman Akbar, Muhammad Badar, Muhammad Zaheer
Author Information
  1. Muhammad Usman Akbar: Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, KPK 29050, Pakistan.
  2. Muhammad Badar: Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, KPK 29050, Pakistan.
  3. Muhammad Zaheer: Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan. ORCID

Abstract

Along with the increasing incidence of cancer and drawbacks of traditional drug delivery systems (DDSs), developing novel nanocarriers for sustained targeted-drug release has become urgent. In this regard, metal-organic frameworks (MOFs) have emerged as potential candidates due to their structural flexibility, defined porosity, lower toxicity, and biodegradability. Herein, a FeMn-based ferromagnetic MOF was synthesized from a preassembled FeMn(μ-O) cluster. The introduction of the Mn provided the ferromagnetic character to FeMn-MIL-88B. 5-Fluoruracil (5-FU) was encapsulated as a model drug in the MOFs, and its pH and HS dual-stimuli responsive controlled release was realized. FeMn-MIL-88B presented a higher 5-FU loading capacity of 43.8 wt % and rapid drug release behavior in a tumor microenvironment (TME) simulated medium. The carriers can rapidly release loaded drug of 70% and 26% in PBS solution (pH = 5.4) and NaHS solution (500 μM) within 24 h. The application of mathematical release models indicated 5-FU release from carriers can be precisely fitted to the first-order, second-order, and Higuchi models of release. Moreover, the cytotoxicity profile of the carrier against human embryonic kidney cells (HEK293T) suggests no adverse effects up to 100 μg/mL. The lesser toxic effect on cell viability can be attributed to the low toxicity values [LD (Fe) = 30 g·kg, (Mn) = 1.5 g·kg, and (terephthalic acid) = 5 g·kg] of the MOFs structural components. Together with dual-stimuli responsiveness, ferromagnetic nature, and low toxicity, FeMn-MIL-88B MOFs can emerge as promising carriers for drug delivery applications.

References

  1. Angew Chem Int Ed Engl. 2006 Sep 11;45(36):5974-8 [PMID: 16897793]
  2. PLoS One. 2013 Oct 04;8(10):e52094 [PMID: 24124444]
  3. Eur J Pharm Sci. 2001 May;13(2):123-33 [PMID: 11297896]
  4. Chem Rev. 2012 Feb 8;112(2):1232-68 [PMID: 22168547]
  5. Analyst. 2013 Aug 21;138(16):4526-31 [PMID: 23775015]
  6. Adv Mater. 2017 Jun;29(23): [PMID: 28370555]
  7. Adv Mater. 2020 Jun;32(23):e1907035 [PMID: 32319133]
  8. Nano Lett. 2022 May 25;22(10):4207-4214 [PMID: 35532346]
  9. Carbohydr Polym. 2021 Jan 15;252:117229 [PMID: 33183649]
  10. Nat Rev Cancer. 2011 Aug 11;11(9):671-7 [PMID: 21833026]
  11. Sci Rep. 2019 Nov 26;9(1):17570 [PMID: 31772254]
  12. Dalton Trans. 2013 Jan 14;42(2):550-7 [PMID: 23086076]
  13. Nanoscale Res Lett. 2020 Feb 22;15(1):48 [PMID: 32088775]
  14. Chemistry. 2004 Mar 19;10(6):1373-82 [PMID: 15034882]
  15. Anal Chem. 2013 Feb 5;85(3):1374-81 [PMID: 23234236]
  16. Chemistry. 2013 May 17;19(21):6785-90 [PMID: 23536364]
  17. Chem Commun (Camb). 2017 Aug 11;53(62):8802-8805 [PMID: 28736784]
  18. Nature. 2013 Sep 19;501(7467):346-54 [PMID: 24048067]
  19. ACS Omega. 2018 Jun 30;3(6):6770-6778 [PMID: 30023959]
  20. Chemistry. 2019 Aug 6;25(44):10490-10498 [PMID: 31163099]
  21. ACS Appl Mater Interfaces. 2020 Jul 8;12(27):30189-30197 [PMID: 32530261]
  22. Dalton Trans. 2016 Nov 15;45(45):18120-18132 [PMID: 27785489]
  23. Nat Med. 2013 Nov;19(11):1423-37 [PMID: 24202395]
  24. Chemistry. 2011 Jun 14;17(25):7069-79 [PMID: 21557349]
  25. Dalton Trans. 2018 Apr 3;47(14):4847-4855 [PMID: 29541717]
  26. ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11157-11166 [PMID: 30869853]
  27. Int J Pharm. 2021 May 15;601:120571 [PMID: 33812967]
  28. Adv Sci (Weinh). 2018 Nov 20;6(1):1801526 [PMID: 30643728]
  29. ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7004-7020 [PMID: 33554591]
  30. Int J Biol Macromol. 2020 Jul 15;155:876-882 [PMID: 31805324]
  31. Biomaterials. 2020 Jan;228:119578 [PMID: 31678843]
  32. J Pharm Sci. 2018 Feb;107(2):513-528 [PMID: 29045885]
  33. Chem Commun (Camb). 2016 Mar 4;52(18):3669-72 [PMID: 26853858]
  34. Dalton Trans. 2019 May 7;48(18):6191-6197 [PMID: 30964484]
  35. Dalton Trans. 2020 Nov 25;49(45):16348-16358 [PMID: 32432619]
  36. ACS Appl Mater Interfaces. 2017 Jul 19;9(28):23957-23966 [PMID: 28650146]
  37. Drug Deliv Transl Res. 2022 Jan;12(1):105-123 [PMID: 33604837]
  38. Cancer Cell. 2020 Aug 10;38(2):167-197 [PMID: 32649885]
  39. Br J Cancer. 2022 Apr;126(7):1055-1066 [PMID: 34952931]
  40. J Am Chem Soc. 2011 Nov 9;133(44):17839-47 [PMID: 21950795]
  41. Int J Nanomedicine. 2019 Nov 28;14:9259-9273 [PMID: 31819428]
  42. Cell Immunol. 2020 Feb;348:104039 [PMID: 32007223]
  43. Langmuir. 2011 Dec 20;27(24):15261-7 [PMID: 22053750]
  44. Int J Pharm. 2008 Dec 8;364(2):328-43 [PMID: 18822362]
  45. Adv Mater. 2019 Dec;31(49):e1904329 [PMID: 31538379]
  46. Dalton Trans. 2012 Jun 21;41(23):6906-9 [PMID: 22580798]
  47. J Mater Chem B. 2014 Mar 7;2(9):1144-1151 [PMID: 32261350]
  48. ACS Omega. 2018 Mar 31;3(3):2994-3003 [PMID: 29623304]
  49. Biomaterials. 2020 Feb;230:119619 [PMID: 31757529]
  50. Int J Nanomedicine. 2016 Feb 12;11:597-605 [PMID: 26929619]
  51. Pharm Res. 2010 Nov;27(11):2414-20 [PMID: 20721605]
  52. Pharmaceutics. 2021 Jun 01;13(6): [PMID: 34205990]
  53. J Am Chem Soc. 2009 Jun 24;131(24):8376-7 [PMID: 19489551]
  54. ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17399-407 [PMID: 26196506]
  55. Chemosphere. 2017 Oct;184:795-805 [PMID: 28645083]
  56. J Am Chem Soc. 2008 May 28;130(21):6774-80 [PMID: 18454528]
  57. Drug Deliv Transl Res. 2021 Apr;11(2):626-646 [PMID: 33666878]
  58. J Am Chem Soc. 2016 Oct 26;138(42):13822-13825 [PMID: 27701854]
  59. PLoS One. 2013 Nov 01;8(11):e78172 [PMID: 24223771]
  60. Curr Opin Chem Biol. 2021 Apr;61:143-153 [PMID: 33631394]
  61. Inorg Chem. 2006 Sep 4;45(18):7069-76 [PMID: 16933905]
  62. Front Med. 2018 Aug;12(4):490-495 [PMID: 30022460]
  63. Nanomaterials (Basel). 2020 Dec 11;10(12): [PMID: 33322372]
  64. Small. 2014 Jul 23;10(14):2927-36 [PMID: 24644065]
  65. Anal Chem. 2021 Jul 13;93(27):9356-9363 [PMID: 34192871]
  66. J Mater Chem B. 2019 Dec 11;7(48):7683-7689 [PMID: 31778139]
  67. ACS Appl Mater Interfaces. 2019 Jun 12;11(23):21239-21249 [PMID: 31141340]
  68. Dalton Trans. 2019 Oct 7;48(37):13953-13959 [PMID: 31490505]
  69. ACS Appl Bio Mater. 2021 Sep 20;4(9):7103-7110 [PMID: 35006942]

Word Cloud

Created with Highcharts 10.0.0releasedrugMOFscan=toxicityferromagneticFeMn-MIL-88B5-FUcarriers5deliverystructuralMnpHdual-stimulisolutionmodelslowg·kgAlongincreasingincidencecancerdrawbackstraditionalsystemsDDSsdevelopingnovelnanocarrierssustainedtargeted-drugbecomeurgentregardmetal-organicframeworksemergedpotentialcandidatesdueflexibilitydefinedporositylowerbiodegradabilityHereinFeMn-basedMOFsynthesizedpreassembledFeMnμ-Oclusterintroductionprovidedcharacter5-FluoruracilencapsulatedmodelHSresponsivecontrolledrealizedpresentedhigherloadingcapacity438wt%rapidbehaviortumormicroenvironmentTMEsimulatedmediumrapidlyloaded70%26%PBS4NaHS500μMwithin24happlicationmathematicalindicatedpreciselyfittedfirst-ordersecond-orderHiguchiMoreovercytotoxicityprofilecarrierhumanembryonickidneycellsHEK293Tsuggestsadverseeffects100μg/mLlessertoxiceffectcellviabilityattributedvalues[LDFe301terephthalicacidg·kg]componentsTogetherresponsivenessnatureemergepromisingapplicationsProgrammableDrugReleaseDual-StimuliResponsiveMagneticMetal-OrganicFramework

Similar Articles

Cited By