Cognitive Heterogeneity and Risk of Progression in Data-Driven Subtle Cognitive Decline Phenotypes.

Kelsey R Thomas, Katherine J Bangen, Alexandra J Weigand, Gema Ortiz, Kayla S Walker, David P Salmon, Mark W Bondi, Emily C Edmonds
Author Information
  1. Kelsey R Thomas: Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
  2. Katherine J Bangen: Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
  3. Alexandra J Weigand: San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.
  4. Gema Ortiz: Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
  5. Kayla S Walker: Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
  6. David P Salmon: Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
  7. Mark W Bondi: Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
  8. Emily C Edmonds: Banner Alzheimer's Institute, Tucson, AZ, USA.

Abstract

BACKGROUND: There is increasing recognition of cognitive and pathological heterogeneity in early-stage Alzheimer's disease and other dementias. Data-driven approaches have demonstrated cognitive heterogeneity in those with mild cognitive impairment (MCI), but few studies have examined this heterogeneity and its association with progression to MCI/dementia in cognitively unimpaired (CU) older adults.
OBJECTIVE: We identified cluster-derived subgroups of CU participants based on comprehensive neuropsychological data and compared baseline characteristics and rates of progression to MCI/dementia or a Dementia Rating Scale (DRS) of ���129 across subgroups.
METHODS: Hierarchical cluster analysis was conducted on individual baseline neuropsychological test scores from 365 CU participants in the UCSD Shiley-Marcos Alzheimer's Disease Research Center longitudinal cohort. Cox regressions examined the risk of progression to consensus diagnosis of MCI or dementia, or to DRS score ���129, by cluster group.
RESULTS: Cluster analysis identified 5 groups: All-Average (n���=���139), Low-Visuospatial (n���=���46), Low-Executive (n���=���51), Low-Memory/Language (n���=���83), and Low-All Domains (n���=���46). Subgroups had unique demographic and clinical characteristics. Rates of progression to MCI/dementia or to DRS ���129 were faster for all subgroups (Low-All Domains progressed the fastest���>���Low Memory/Language���Low-Visuospatial and Low-Executive) relative to the All-Average subgroup.
CONCLUSION: Faster progression in the Low-Visuospatial, Low-Executive, and Low-Memory/Language groups compared to the All-Average group suggests that there are multiple pathways and/or unique subtle cognitive decline profiles that ultimately lead to a diagnosis of MCI/dementia. Use of comprehensive neuropsychological test batteries that assess several domains may be a key first step toward an individualized approach to early detection and fewer missed opportunities for early intervention.

Keywords

References

  1. Alzheimers Dement. 2015 Apr;11(4):415-24 [PMID: 24857234]
  2. Arch Neurol. 2010 Jun;67(6):746-9 [PMID: 20558394]
  3. J Alzheimers Dis. 2021;82(4):1833-1846 [PMID: 34219713]
  4. Alzheimers Dement. 2019 Jul;15(7):878-887 [PMID: 31128864]
  5. J Neurol Neurosurg Psychiatry. 2011 Jan;82(1):45-51 [PMID: 20562467]
  6. J Alzheimers Dis. 2022;85(2):627-644 [PMID: 34864658]
  7. Neurology. 2005 Aug 9;65(3):397-403 [PMID: 16087904]
  8. Arch Neurol. 1994 Sep;51(9):888-95 [PMID: 8080388]
  9. Neurology. 2021 Sep 28;97(13):e1288-e1299 [PMID: 34376506]
  10. J Intern Med. 2004 Sep;256(3):240-6 [PMID: 15324367]
  11. Alzheimers Dement. 2011 May;7(3):280-92 [PMID: 21514248]
  12. Nat Med. 2021 May;27(5):871-881 [PMID: 33927414]
  13. J Gerontol. 1982 May;37(3):323-9 [PMID: 7069156]
  14. Alzheimers Dement. 2017 Aug;13(8):870-884 [PMID: 28259709]
  15. Alzheimers Dement. 2014 Nov;10(6):844-52 [PMID: 24798886]
  16. J Intern Med. 2004 Sep;256(3):183-94 [PMID: 15324362]
  17. Alzheimers Dement. 2018 Jun;14(6):734-742 [PMID: 29352855]
  18. Sci Transl Med. 2014 Mar 19;6(228):228fs13 [PMID: 24648338]
  19. J Alzheimers Dis. 2016 Mar 29;52(3):849-61 [PMID: 27031472]
  20. Trends Neurosci. 2022 May;45(5):342-345 [PMID: 35227519]
  21. J Int Neuropsychol Soc. 2017 Aug;23(7):564-576 [PMID: 28578726]
  22. Arch Neurol. 1995 Sep;52(9):899-904 [PMID: 7661728]
  23. Neurology. 2020 Jun 16;94(24):e2532-e2544 [PMID: 32393648]
  24. J Int Neuropsychol Soc. 2017 Jul;23(6):521-527 [PMID: 28487004]
  25. Brain Commun. 2020;2(1):fcz046 [PMID: 32051933]
  26. J Gerontol B Psychol Sci Soc Sci. 2011 Sep;66(5):557-66 [PMID: 21558167]
  27. J Alzheimers Dis. 2021;83(2):641-652 [PMID: 34334404]
  28. Alzheimers Dement (N Y). 2017 Dec 01;4:11-18 [PMID: 29296659]
  29. J Alzheimers Dis. 2019;70(1):227-239 [PMID: 31177226]

Grants

  1. I01 CX001842/CSRD VA
  2. R01 AG049810/NIA NIH HHS
  3. P30 AG062429/NIA NIH HHS
  4. R01 AG063782/NIA NIH HHS
  5. IK2 CX001865/CSRD VA
  6. R03 AG070435/NIA NIH HHS

MeSH Term

Humans
Alzheimer Disease
Disease Progression
Cognitive Dysfunction
Neuropsychological Tests
Cognition
Phenotype

Word Cloud

Created with Highcharts 10.0.0cognitiveprogressionheterogeneityMCI/dementiaCUsubgroupsneuropsychologicalDRS���129All-AverageLow-ExecutiveAlzheimer'sdiseaseMCIexaminedidentifiedparticipantscomprehensivecomparedbaselinecharacteristicsclusteranalysistestdiagnosisgroupLow-Visuospatialn���=���46Low-Memory/LanguageLow-AllDomainsuniquesubtledeclineearlyCognitiveBACKGROUND:increasingrecognitionpathologicalearly-stagedementiasData-drivenapproachesdemonstratedmildimpairmentstudiesassociationcognitivelyunimpairedolderadultsOBJECTIVE:cluster-derivedbaseddataratesDementiaRatingScaleacrossMETHODS:Hierarchicalconductedindividualscores365UCSDShiley-MarcosDiseaseResearchCenterlongitudinalcohortCoxregressionsriskconsensusdementiascoreRESULTS:Cluster5groups:n���=���139n���=���51n���=���83SubgroupsdemographicclinicalRatesfasterprogressedfastest���>���LowMemory/Language���Low-VisuospatialrelativesubgroupCONCLUSION:Fastergroupssuggestsmultiplepathwaysand/orprofilesultimatelyleadUsebatteriesassessseveraldomainsmaykeyfirststeptowardindividualizedapproachdetectionfewermissedopportunitiesinterventionHeterogeneityRiskProgressionData-DrivenSubtleDeclinePhenotypesAlzheimer���sphenotypes

Similar Articles

Cited By