Pediatric robotic surgery: issues in management-expert consensus from the Italian Society of Pediatric and Neonatal Anesthesia and Intensive Care (SARNePI) and the Italian Society of Pediatric Surgery (SICP).
Simonetta Tesoro, Piergiorgio Gamba, Mirko Bertozzi, Rachele Borgogni, Fabio Caramelli, Giovanni Cobellis, Giuseppe Cortese, Ciro Esposito, Tommaso Gargano, Rossella Garra, Giulia Mantovani, Laura Marchesini, Simonetta Mencherini, Mario Messina, Gerald Rogan Neba, Gloria Pelizzo, Simone Pizzi, Giovanna Riccipetitoni, Alessandro Simonini, Costanza Tognon, Mario Lima
Author Information
Simonetta Tesoro: Division of Anesthesia, Analgesia, and Intensive Care, Santa Maria della Misericordia University Hospital, Perugia, Italy.
Piergiorgio Gamba: Pediatric Surgery, Department of Women's and Children's Health, University of Padua, 35128, Padua, Italy. piergiorgio.gamba@unipd.it.
Mirko Bertozzi: Department of Pediatric Surgery, IRCCS San Matteo Polyclinic, University of Pavia, Pavia, Italy.
Rachele Borgogni: Pediatric Surgery Unit, Federico II University of Naples, Naples, Italy.
Fabio Caramelli: Anesthesia and Intensive Care Unit, IRCCS Sant'Orsola Polyclinic, Bologna, Italy.
Giovanni Cobellis: Pediatric Surgery Unit, Salesi Children's Hospital, Polytechnical University of Marche, Ancona, Italy.
Giuseppe Cortese: Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy.
Ciro Esposito: Pediatric Surgery Unit, Federico II University of Naples, Naples, Italy.
Tommaso Gargano: Pediatric Surgery Unit, IRCCS Policlinico Sant'Orsola, University of Bologna, Bologna, Italy.
Rossella Garra: Institute of Anesthesia and Intensive Care, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy.
Giulia Mantovani: Pediatric Anesthesia, Department of Women's and Children's Health, Padua University Hospital, Padua, Italy.
Laura Marchesini: Division of Anesthesia, Analgesia, and Intensive Care, Santa Maria della Misericordia University Hospital, Perugia, Italy.
Simonetta Mencherini: Anesthesiology and Intensive Care Unit, Fondazione IRCCS San Matteo Polyclinic, Pavia, Italy.
Mario Messina: Division of Pediatric Surgery, Santa Maria Alle Scotte Polyclinic, University of Siena, Siena, Italy.
Gerald Rogan Neba: Department of Pediatric Anesthesia and Intensive Care, Salesi Children's Hospital, Ancona, Italy.
BACKGROUND: Pediatric robotic-assisted surgeries have increased in recent years; however, guidance documents are still lacking. This study aimed to develop evidence-based recommendations, or best practice statements when evidence is lacking or inadequate, to assist surgical teams internationally. METHODS: A joint consensus taskforce of anesthesiologists and surgeons from the Italian Society of Pediatric and Neonatal Anesthesia and Intensive Care (SARNePI) and the Italian Society of Pediatric Surgery (SICP) have identified critical areas and reviewed the available evidence. The taskforce comprised 21 experts representing the fields of anesthesia (n = 11) and surgery (n = 10) from clinical centers performing pediatric robotic surgery in the Italian cities of Ancona, Bologna, Milan, Naples, Padua, Pavia, Perugia, Rome, Siena, and Verona. Between December 2020 and September 2021, three meetings, two Delphi rounds, and a final consensus conference took place. RESULTS: During the first planning meeting, the panel agreed on the specific objectives, the definitions to apply, and precise methodology. The project was structured into three subtopics: (i) preoperative patient assessment and preparation; (ii) intraoperative management (surgical and anesthesiologic); and (iii) postoperative procedures. Within these phases, the panel agreed to address a total of 18 relevant areas, which spanned preoperative patient assessment and patient selection, anesthesiology, critical care medicine, respiratory care, prevention of postoperative nausea and vomiting, and pain management. CONCLUSION: Collaboration among surgeons and anesthesiologists will be increasingly important for achieving safe and effective RAS procedures. These recommendations will provide a review for those who already have relevant experience and should be particularly useful for those starting a new program.
Denning N-L, Kallis MP, Prince JM (2020) Pediatric robotic surgery. Surg Clin North Am 100:431–443. https://doi.org/10.1016/j.suc.2019.12.004
[DOI: 10.1016/j.suc.2019.12.004]
Mishra P, Gupta B, Nath A (2020) Anesthetic considerations and goals in robotic pediatric surgery: a narrative review. J Anesth 34:286–293. https://doi.org/10.1007/s00540-020-02738-2
[DOI: 10.1007/s00540-020-02738-2]
Alotaibi WM (2019) Anesthesia experience of pediatric robotic surgery in a University Hospital. J Robot Surg 13:141–146. https://doi.org/10.1007/s11701-018-0834-1
[DOI: 10.1007/s11701-018-0834-1]
Lima M, Thomas E, Di Salvo N, Gargano T, Ruggeri G (2019) Paediatric surgery in the robotic era: early experience and comparative analysis. Pediatr Med Chir. https://doi.org/10.4081/pmc.2019.204
[DOI: 10.4081/pmc.2019.204]
Corcione A, Angelini P, Bencini L, Bertellini E, Borghi F, Buccelli C, Coletta G, Esposito C, Graziano V, Guarracino F, Marchi D, Misitano P, Mori AM, Paternoster M, Pennestrì V, Perrone V, Pugliese L, Romagnoli S, Scudeller L, Corcione F (2018) Joint consensus on abdominal robotic surgery and anesthesia from a task force of the SIAARTI and SIC. Minerva Anestesiol 84:1189–1208. https://doi.org/10.23736/S0375-9393.18.12241-3
[DOI: 10.23736/S0375-9393.18.12241-3]
de Lambert G, Fourcade L, Centi J, Fredon F, Braik K, Szwarc C, Longis B, Lardy H (2013) How to successfully implement a robotic pediatric surgery program: lessons learned after 96 procedures. Surg Endosc 27:2137–2144. https://doi.org/10.1007/s00464-012-2729-y
[DOI: 10.1007/s00464-012-2729-y]
Trevisani LFM, Nguyen HT (2013) Current controversies in pediatric urologic robotic surgery. Curr Opin Urol 23:72–77. https://doi.org/10.1097/MOU.0b013e32835b0ad2
[DOI: 10.1097/MOU.0b013e32835b0ad2]
Finkelstein JB, Levy AC, Silva MV, Murray L, Delaney C, Casale P (2015) How to decide which infant can have robotic surgery? Just do the math. J Pediatr Urol 11:170.e1–4. https://doi.org/10.1016/j.jpurol.2014.11.020
[DOI: 10.1016/j.jpurol.2014.11.020]
Kim C (2019) Robotic urologic surgery in infants: results and complications. Front Pediatr 7:187. https://doi.org/10.3389/fped.2019.00187
[DOI: 10.3389/fped.2019.00187]
Esposito C, Masieri L, Castagnetti M, Pelizzo G, De Gennaro M, Lisi G, Cobellis G, Gamba P, Di Benedetto V, Escolino M (2020) Current status of pediatric robot-assisted surgery in Italy: epidemiologic national survey and future directions. J Laparoendosc Adv Surg Tech A. https://doi.org/10.1089/lap.2019.0516
[DOI: 10.1089/lap.2019.0516]
Lima M, Gargano T, Maffi M, Ruggeri G, Libri M (2017) Shifting from conventional minimally invasive surgery to robotic surgery. In: Mattioli G, Petralia P (eds) Pediatric robotic surgery: technical and management aspects. Springer, Cham, pp 25–32. https://doi.org/10.1007/978-3-319-41863-6_4
[DOI: 10.1007/978-3-319-41863-6_4]
Sheth KR, Koh CJ (2019) The future of robotic surgery in pediatric urology: upcoming technology and evolution within the field. Front Pediatr 7:259. https://doi.org/10.3389/fped.2019.00259
[DOI: 10.3389/fped.2019.00259]
Richards HW, Kulaylat AN, Cooper JN, McLeod DJ, Diefenbach KA, Michalsky MP (2021) Trends in robotic surgery utilization across tertiary children’s hospitals in the United States. Surg Endosc 35:6066–6072. https://doi.org/10.1007/s00464-020-08098-y
[DOI: 10.1007/s00464-020-08098-y]
United States Preventive Services Taskforce (2012) Grade Definitions. https://www.uspreventiveservicestaskforce.org/uspstf/about-uspstf/methods-and-processes/grade-definitions . Accessed 13 Nov 2021
Chen CJ, Peters CA (2019) Robotic assisted surgery in pediatric urology: current status and future directions. Front Pediatr 7:90. https://doi.org/10.3389/fped.2019.00090
[DOI: 10.3389/fped.2019.00090]
Wakimoto M, Michalsky M, Nafiu O, Tobias J (2021) Anesthetic implications of robotic-assisted surgery in pediatric patients. Robot Surg 8:9–19. https://doi.org/10.2147/RSRR.S308185
[DOI: 10.2147/RSRR.S308185]
Meignan P, Ballouhey Q, Lejeune J, Braik K, Longis B, Cook AR, Lardy H, Fourcade L, Binet A (2018) Robotic-assisted laparoscopic surgery for pediatric tumors: a bicenter experience. J Robot Surg 12:501–508. https://doi.org/10.1007/s11701-017-0773-2
[DOI: 10.1007/s11701-017-0773-2]
Molinaro F, Angotti R, Bindi E, Pellegrino C, Fusi G, Luzzi L, Tosi N, Messina M, Mattioli G (2019) Low weight child: can it be considered a limit of robotic surgery? experience of two centers. J Laparoendosc Adv Surg Tech A 29:698–702. https://doi.org/10.1089/lap.2017.0681
[DOI: 10.1089/lap.2017.0681]
Masieri L, Sforza S, Grosso AA, Valastro F, Tellini R, Cini C, Landi L, Taverna M, Elia A, Mantovani A, Minervini A, Carini M (2020) Robot-assisted laparoscopic pyeloplasty in children: a systematic review. Minerva Urol Nefrol 72:673–690. https://doi.org/10.23736/S0393-2249.20.03854-0
[DOI: 10.23736/S0393-2249.20.03854-0]
Di Fabrizio D, Lisi G, Lauriti G, Di Renzo D, Lannutti A, Marino N, Lelli Chiesa P (2020) Conversion rate in pediatric robotic-assisted surgery: looking for the culprit. J Laparoendosc Adv Surg Tech A 30:315–321. https://doi.org/10.1089/lap.2019.0653
[DOI: 10.1089/lap.2019.0653]
Kawal T, Sahadev R, Srinivasan A, Chu D, Weiss D, Long C, Van Batavia J, Bodar Y, Shah J, Shukla AR (2020) Robotic surgery in infants and children: an argument for smaller and fewer incisions. World J Urol 38:1835–1840. https://doi.org/10.1007/s00345-019-02765-z
[DOI: 10.1007/s00345-019-02765-z]
Kafka IZ, Kocherov S, Jaber J, Chertin B (2019) Pediatric robotic-assisted laparoscopic pyeloplasty (RALP): does weight matter? Pediatr Surg Int 35:391–396. https://doi.org/10.1007/s00383-019-04435-y
[DOI: 10.1007/s00383-019-04435-y]
Li P, Zhou H, Cao H, Guo T, Zhu W, Zhao Y, Tao T, Zhou X, Ma L, Yang Y, Feng Z (2021) Early robotic-assisted laparoscopic pyeloplasty for infants under 3 months with severe ureteropelvic junction obstruction. Front Pediatr 9:590865. https://doi.org/10.3389/fped.2021.590865
[DOI: 10.3389/fped.2021.590865]
Gruppo di studio SARNePI (2014) Raccomandazioni per la valutazione anestesiologica e la richiesta di esami preoperatori nei pazienti pediatrici. https://www.euroespa.com/wp-content/uploads/2014/11/Raccomandazioni-per-la-valutazione-anestesiologica-e-la-richiesta-di-esami-preoperatori-nei-pazienti-pediatrici-_1_.pdf . Accessed 13 Nov 2021
Gillory LA, Megison ML, Harmon CM, Chen MK, Anderson S, Chong AJ, Chaignaud BE, Beierle EA (2012) Laparoscopic surgery in children with congenital heart disease. J Pediatr Surg 47:1084–1088. https://doi.org/10.1016/j.jpedsurg.2012.03.008
[DOI: 10.1016/j.jpedsurg.2012.03.008]
Craig BT, Rellinger EJ, Mettler BA, Watkins S, Donahue BS, Chung DH (2016) Laparoscopic Nissen fundoplication in infants with hypoplastic left heart syndrome. J Pediatr Surg 51:76–80. https://doi.org/10.1016/j.jpedsurg.2015.10.013
[DOI: 10.1016/j.jpedsurg.2015.10.013]
Maizlin II, Shroyer MC, Beierle EA, Chen MK, Russell RT (2017) Open versus laparoscopic approach to gastric fundoplication in children with cardiac risk factors. J Surg Res 220:52–58. https://doi.org/10.1016/j.jss.2017.05.093
[DOI: 10.1016/j.jss.2017.05.093]
Chu DI, Tan JM, Mattei P, Simpao AF, Costarino AT, Shukla AR, Rossano JW, Tasian GE (2018) Outcomes of laparoscopic and open surgery in children with and without congenital heart disease. J Pediatr Surg 53:1980–1988. https://doi.org/10.1016/j.jpedsurg.2017.10.052
[DOI: 10.1016/j.jpedsurg.2017.10.052]
Kim J, Sun Z, Englum BR, Allori AC, Adibe OO, Rice HE, Tracy ET (2016) Laparoscopy is safe in infants and neonates with congenital heart disease: a national study of 3684 patients. J Laparoendosc Adv Surg Tech A 26:836–839. https://doi.org/10.1089/lap.2016.0232
[DOI: 10.1089/lap.2016.0232]
Cribbs RK, Heiss KF, Clabby ML, Wulkan ML (2008) Gastric fundoplication is effective in promoting weight gain in children with severe congenital heart defects. J Pediatr Surg 43:283–289. https://doi.org/10.1016/j.jpedsurg.2007.10.017
[DOI: 10.1016/j.jpedsurg.2007.10.017]
Weber ED, Colyer MH, Lesser RL, Subramanian PS (2007) Posterior ischemic optic neuropathy after minimally invasive prostatectomy. J neuro-ophthalmology Off J North Am Neuro-Ophthalmology Soc 27:285–287. https://doi.org/10.1097/WNO.0b013e31815b9f67
[DOI: 10.1097/WNO.0b013e31815b9f67]
Chin J-H, Kim W-J, Lee J, Han YA, Lim J, Hwang J-H, Cho S-S, Kim Y-K (2017) Effect of positive end-expiratory pressure on the sonographic optic nerve sheath diameter as a surrogate for intracranial pressure during robot-assisted laparoscopic prostatectomy: a randomized controlled trial. PLoS ONE 12:e0170369. https://doi.org/10.1371/journal.pone.0170369
[DOI: 10.1371/journal.pone.0170369]
Kim M-S, Bai S-J, Lee J-R, Choi YD, Kim YJ, Choi SH (2014) Increase in intracranial pressure during carbon dioxide pneumoperitoneum with steep trendelenburg positioning proven by ultrasonographic measurement of optic nerve sheath diameter. J Endourol 28:801–806. https://doi.org/10.1089/end.2014.0019
[DOI: 10.1089/end.2014.0019]
Verdonck P, Kalmar AF, Suy K, Geeraerts T, Vercauteren M, Mottrie A, De Wolf AM, Hendrickx JFA (2014) Optic nerve sheath diameter remains constant during robot assisted laparoscopic radical prostatectomy. PLoS ONE 9:e111916. https://doi.org/10.1371/journal.pone.0111916
[DOI: 10.1371/journal.pone.0111916]
You AH, Song Y, Kim D-H, Suh J, Baek JW, Han DW (2019) Effects of positive end-expiratory pressure on intraocular pressure and optic nerve sheath diameter in robot-assisted laparoscopic radical prostatectomy: a randomized, clinical trial. Medicine (Baltimore) 98:e15051. https://doi.org/10.1097/MD.0000000000015051
[DOI: 10.1097/MD.0000000000015051]
Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M (2009) Recurrence of congenital heart defects in families. Circulation 120:295–301. https://doi.org/10.1161/CIRCULATIONAHA.109.857987
[DOI: 10.1161/CIRCULATIONAHA.109.857987]
Liu S, Joseph KS, Lisonkova S, Rouleau J, Van den Hof M, Sauve R, Kramer MS (2013) Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation 128:583–589. https://doi.org/10.1161/CIRCULATIONAHA.112.001054
[DOI: 10.1161/CIRCULATIONAHA.112.001054]
Auger N, Fraser WD, Healy-Profitós J, Arbour L (2015) Association between preeclampsia and congenital heart defects. JAMA 314:1588–1598. https://doi.org/10.1001/jama.2015.12505
[DOI: 10.1001/jama.2015.12505]
Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA, Webb CL (2007) Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American heart association council on cardiovascular disease in the young: endorsed by the American academy of pediatrics. Circulation 115:2995–3014. https://doi.org/10.1161/CIRCULATIONAHA.106.183216
[DOI: 10.1161/CIRCULATIONAHA.106.183216]
Faraoni D, Vo D, Nasr VG, DiNardo JA (2016) Development and validation of a risk stratification score for children with congenital heart disease undergoing noncardiac surgery. Anesth Analg 123:824–830. https://doi.org/10.1213/ANE.0000000000001500
[DOI: 10.1213/ANE.0000000000001500]
Karabayirli S, Çimen NK, Muslu B, Tenlik A, Gözdemir M, Sert H, Hepşen İF (2016) Effect of positive end-expiratory pressure administration on intraocular pressure in laparoscopic cholecystectomy: randomised controlled trial. Eur J Anaesthesiol 33:696–699
[DOI: 10.1097/EJA.0000000000000459]
Astuto M, Minardi C, Uva MG, Gullo A (2011) Intraocular pressure during laparoscopic surgery in paediatric patients. Br J Ophthalmol 95:294–295
[DOI: 10.1136/bjo.2010.195396]
Madan R, Tamilselvan P, Sadhasivam S, Shende D, Gupta V, Kaul HL (2000) Intra-ocular pressure and haemodynamic changes after tracheal intubation and extubation: a comparative study in glaucomatous and nonglaucomatous children. Anaesthesia 55:380–384. https://doi.org/10.1046/j.1365-2044.2000.01213.x
[DOI: 10.1046/j.1365-2044.2000.01213.x]
Loganathan AK, Joselyn AS, Babu M, Jehangir S (2021) Implementation and outcomes of enhanced recovery protocols in pediatric surgery: a systematic review and meta-analysis. Pediatr Surg Int. https://doi.org/10.1007/s00383-021-05008-8
[DOI: 10.1007/s00383-021-05008-8]
Arena S, Di Fabrizio D, Impellizzeri P, Gandullia P, Mattioli G, Romeo C (2021) Enhanced Recovery After Gastrointestinal Surgery (ERAS) in pediatric patients: a systematic review and meta-analysis. J Gastrointest Surg 25:2976–2988. https://doi.org/10.1007/s11605-021-05053-7
[DOI: 10.1007/s11605-021-05053-7]
Short HL, Heiss KF, Burch K, Travers C, Edney J, Venable C, Raval MV (2018) Implementation of an enhanced recovery protocol in pediatric colorectal surgery. J Pediatr Surg 53:688–692. https://doi.org/10.1016/j.jpedsurg.2017.05.004
[DOI: 10.1016/j.jpedsurg.2017.05.004]
Reismann M, Dingemann J, Wolters M, Laupichler B, Suempelmann R, Ure BM (2009) Fast-track concepts in routine pediatric surgery: a prospective study in 436 infants and children. Langenbeck’s Arch Surg 394:529–533. https://doi.org/10.1007/s00423-008-0440-1
[DOI: 10.1007/s00423-008-0440-1]
Rouanet P, Mermoud A, Jarlier M, Bouazza N, Laine A, Mathieu Daudé H (2020) Combined robotic approach and enhanced recovery after surgery pathway for optimization of costs in patients undergoing proctectomy. BJS open 4:516–523. https://doi.org/10.1002/bjs5.50281
[DOI: 10.1002/bjs5.50281]
Shinnick JK, Short HL, Heiss KF, Santore MT, Blakely ML, Raval MV (2016) Enhancing recovery in pediatric surgery: a review of the literature. J Surg Res 202:165–176. https://doi.org/10.1016/j.jss.2015.12.051
[DOI: 10.1016/j.jss.2015.12.051]
Brindle ME, McDiarmid C, Short K, Miller K, MacRobie A, Lam JYK, Brockel M, Raval MV, Howlett A, Lee K-S, Offringa M, Wong K, de Beer D, Wester T, Skarsgard ED, Wales PW, Fecteau A, Haliburton B, Goobie SM, Nelson G (2020) Consensus guidelines for perioperative care in neonatal intestinal surgery: Enhanced Recovery After Surgery (ERAS(®)) society recommendations. World J Surg 44:2482–2492. https://doi.org/10.1007/s00268-020-05530-1
[DOI: 10.1007/s00268-020-05530-1]
Rove KO, Edney JC, Brockel MA (2018) Enhanced recovery after surgery in children: promising, evidence-based multidisciplinary care. Paediatr Anaesth 28:482–492. https://doi.org/10.1111/pan.13380
[DOI: 10.1111/pan.13380]
Chandrasoma S, Kokorowski P, Peters CA, Koh CJ (2010) Straight-arm positioning and port placement for pediatric robotic-assisted laparoscopic renal surgery. J Robot Surg 4:29–32. https://doi.org/10.1007/s11701-010-0184-0
[DOI: 10.1007/s11701-010-0184-0]
Chang C, Steinberg Z, Shah A, Gundeti MS (2014) Patient positioning and port placement for robot-assisted surgery. J Endourol 28:631–638. https://doi.org/10.1089/end.2013.0733
[DOI: 10.1089/end.2013.0733]
Lee JR (2014) Anesthetic considerations for robotic surgery. Korean J Anesthesiol 66:3–11. https://doi.org/10.4097/kjae.2014.66.1.3
[DOI: 10.4097/kjae.2014.66.1.3]
Disma N, Calderini E (2018) SIAARTI-SARNePI clinical-organizational standards for pediatric anesthesia. Minerva Anestesiol 84:143–146
[DOI: 10.23736/S0375-9393.17.12309-6]
Aceto P, Beretta L, Cariello C, Claroni C, Esposito C, Forastiere EM, Guarracino F, Perucca R, Romagnoli S, Sollazzi L, Cela V, Ercoli A, Scambia G, Vizza E, Ludovico GM, Sacco E, Vespasiani G, Scudeller L, Corcione A (2019) Joint consensus on anesthesia in urologic and gynecologic robotic surgery: specific issues in management from a task force of the SIAARTI, SIGO, and SIU. Minerva Anestesiol 85:871–885. https://doi.org/10.23736/S0375-9393.19.13360-3
[DOI: 10.23736/S0375-9393.19.13360-3]
Marsh N, Webster J, Mihala G, Rickard CM (2015) Devices and dressings to secure peripheral venous catheters to prevent complications. Cochrane database Syst Rev. https://doi.org/10.1002/14651858.CD011070.pub2
[DOI: 10.1002/14651858.CD011070.pub2]
Ullman AJ, Cooke ML, Mitchell M, Lin F, New K, Long DA, Mihala G, Rickard CM (2015) Dressings and securement devices for central venous catheters (CVC). Cochrane database Syst Rev 2015:CD010367. https://doi.org/10.1002/14651858.CD010367.pub2
[DOI: 10.1002/14651858.CD010367.pub2]
Gravante F, Lombardi A, Gagliardi AM, Pucci A, Latina R (2020) Dressings and securement devices of peripheral arterial catheters in intensive care units and operating theaters: a systematic review. Dimens Crit Care Nurs 39:242–250. https://doi.org/10.1097/DCC.0000000000000433
[DOI: 10.1097/DCC.0000000000000433]
Merchaoui Z, Lausten-Thomsen U, Pierre F, Ben Laiba M, Le Saché N, Tissieres P (2017) Supraclavicular approach to ultrasound-guided brachiocephalic vein cannulation in children and neonates. Front Pediatr 5:211. https://doi.org/10.3389/fped.2017.00211
[DOI: 10.3389/fped.2017.00211]
Habas F, Baleine J, Milési C, Combes C, Didelot M-N, Romano-Bertrand S, Grau D, Parer S, Baud C, Cambonie G (2018) Supraclavicular catheterization of the brachiocephalic vein: a way to prevent or reduce catheter maintenance-related complications in children. Eur J Pediatr 177:451–459. https://doi.org/10.1007/s00431-017-3082-x
[DOI: 10.1007/s00431-017-3082-x]
Jamshidi R (2019) Central venous catheters: Indications, techniques, and complications. Semin Pediatr Surg 28:26–32. https://doi.org/10.1053/j.sempedsurg.2019.01.005
[DOI: 10.1053/j.sempedsurg.2019.01.005]
Spinelli G, Vargas M, Aprea G, Cortese G, Servillo G (2016) Pediatric anesthesia for minimally invasive surgery in pediatric urology. Transl Pediatr 5:214–221. https://doi.org/10.21037/tp.2016.09.02
[DOI: 10.21037/tp.2016.09.02]
Van Batavia JP, Casale P (2013) Robotic surgery of the kidney and ureter in pediatric patients. Curr Urol Rep 14:373–378. https://doi.org/10.1007/s11934-013-0331-z
[DOI: 10.1007/s11934-013-0331-z]
Muñoz CJ, Nguyen HT, Houck CS (2016) Robotic surgery and anesthesia for pediatric urologic procedures. Curr Opin Anaesthesiol 29:337–344. https://doi.org/10.1097/ACO.0000000000000333
[DOI: 10.1097/ACO.0000000000000333]
Tobias JD (2002) Anaesthesia for minimally invasive surgery in children. Best Pract Res Clin Anaesthesiol 16:115–130. https://doi.org/10.1053/bean.2001.0211
[DOI: 10.1053/bean.2001.0211]
McParlan D, Edgar L, Gault M, Gillespie S, Menelly R, Reid M (2020) Intravascular catheter migration: a cross-sectional and health-economic comparison of adhesive and subcutaneous engineered stabilisation devices for intravascular device securement. J Vasc Access 21:33–38. https://doi.org/10.1177/1129729819851059
[DOI: 10.1177/1129729819851059]
Rutledge LF, DeCabooter DP, Walters S-AH, Bernatchez SF (2015) Catheter securement systems: comparison of two investigational devices to a sutureless securement device, a securement dressing, and sutures in a pig model. Intensive care Med Exp 3:60. https://doi.org/10.1186/s40635-015-0060-3
[DOI: 10.1186/s40635-015-0060-3]
Karpanen TJ, Casey AL, Whitehouse T, Timsit J-F, Mimoz O, Palomar M, Elliott TSJ (2019) A clinical evaluation of two central venous catheter stabilization systems. Ann Intensive Care 9:49. https://doi.org/10.1186/s13613-019-0519-6
[DOI: 10.1186/s13613-019-0519-6]
Mariano ER, Furukawa L, Woo RK, Albanese CT, Brock-Utne JG (2004) Anesthetic concerns for robot-assisted laparoscopy in an infant. Anesth Analg 99:1665–1667. https://doi.org/10.1213/01.ANE.0000137394.99683.66
[DOI: 10.1213/01.ANE.0000137394.99683.66]
Spinoit A-F, Nguyen H, Subramaniam R (2017) Role of robotics in children: a brave new World! Eur Urol Focus 3:172–180. https://doi.org/10.1016/j.euf.2017.08.011
[DOI: 10.1016/j.euf.2017.08.011]
Ashraf J, Krishnan J, Turner A, Subramaniam R (2018) Robot docking time: cumulative summation analysis of a procedure-independent learning curve in pediatric urology. J Laparoendosc Adv Surg Tech A 28:1139–1141. https://doi.org/10.1089/lap.2017.0418
[DOI: 10.1089/lap.2017.0418]
Meenakshi-Sundaram B, Furr JR, Malm-Buatsi E, Boklage B, Nguyen E, Frimberger D, Palmer BW (2017) Reduction in surgical fog with a warm humidified gas management protocol significantly shortens procedure time in pediatric robot-assisted laparoscopic procedures. J Pediatr Urol 13:489.e1-489.e5. https://doi.org/10.1016/j.jpurol.2017.01.017
[DOI: 10.1016/j.jpurol.2017.01.017]
Minnillo BJ, Cruz JAS, Sayao RH, Passerotti CC, Houck CS, Meier PM, Borer JG, Diamond DA, Retik AB, Nguyen HT (2011) Long-term experience and outcomes of robotic assisted laparoscopic pyeloplasty in children and young adults. J Urol 185:1455–1460. https://doi.org/10.1016/j.juro.2010.11.056
[DOI: 10.1016/j.juro.2010.11.056]
Durand M, Musleh L, Vatta F, Orofino G, Querciagrossa S, Jugie M, Bustarret O, Delacourt C, Sarnacki S, Blanc T, Khen-Dunlop N (2021) Robotic lobectomy in children with severe bronchiectasis: a worthwhile new technology. J Pediatr Surg 56:1606–1610. https://doi.org/10.1016/j.jpedsurg.2020.11.009
[DOI: 10.1016/j.jpedsurg.2020.11.009]
Blanc T, Kohaut J, Elie C, Clermidi P, Pio L, Harte C, Brönnimann E, Botto N, Rousseau V, Sonigo P, Vaessen C, Lottmann H, Aigrain Y (2019) Retroperitoneal approach for ureteropelvic junction obstruction: encouraging preliminary results with robot-assisted laparoscopic repair. Front Pediatr 7:209. https://doi.org/10.3389/fped.2019.00209
[DOI: 10.3389/fped.2019.00209]
Silva MV, Levy AC, Finkelstein JB, Van Batavia JP, Casale P (2015) Is peri-operative urethral catheter drainage enough? The case for stentless pediatric robotic pyeloplasty. J Pediatr Urol 11:175.e1–5. https://doi.org/10.1016/j.jpurol.2015.06.003
[DOI: 10.1016/j.jpurol.2015.06.003]
Sureka SK, Patidar N, Mittal V, Kapoor R, Srivastava A, Kishore K, Dhiraj S, Ansari MS (2016) Safe and optimal pneumoperitoneal pressure for transperitoneal laparoscopic renal surgery in infant less than 10 kg, looked beyond intraoperative period: a prospective randomized study. J Pediatr Urol 12:281.e1-281.e7. https://doi.org/10.1016/j.jpurol.2016.01.014
[DOI: 10.1016/j.jpurol.2016.01.014]
Mattioli G, Montobbio G, Pini Prato A, Repetto P, Carlini C, Gentilino V, Castagnetti M, Leggio S, Della Rocca M, Kotitsa Z, Jasonni V (2003) Anesthesiologic aspects of laparoscopic fundoplication for gastroesophageal reflux in children with chronic respiratory and gastroenterological symptoms. Surg Endosc 17:559–566. https://doi.org/10.1007/s00464-002-9077-2
[DOI: 10.1007/s00464-002-9077-2]
Meininger D, Byhahn C, Mierdl S, Lehnert M, Heller K, Zwissler B, Bremerich DH (2005) Hemodynamic and respiratory effects of robot-assisted laparoscopic fundoplication in children. World J Surg 29:615–619. https://doi.org/10.1007/s00268-005-7695-2
[DOI: 10.1007/s00268-005-7695-2]
Feldman JM (2015) Optimal ventilation of the anesthetized pediatric patient. Anesth Analg 120:165–175. https://doi.org/10.1213/ANE.0000000000000472
[DOI: 10.1213/ANE.0000000000000472]
Gattinoni L, Collino F, Maiolo G, Rapetti F, Romitti F, Tonetti T, Vasques F, Quintel M (2017) Positive end-expiratory pressure: how to set it at the individual level. Ann Transl Med 5:288. https://doi.org/10.21037/atm.2017.06.64
[DOI: 10.21037/atm.2017.06.64]
Acosta CM, Sara T, Carpinella M, Volpicelli G, Ricci L, Poliotto S, Abrego D, Gonorazky S, Böhm SH, Tusman G (2018) Lung recruitment prevents collapse during laparoscopy in children: a randomised controlled trial. Eur J Anaesthesiol 35:573–580. https://doi.org/10.1097/EJA.0000000000000761
[DOI: 10.1097/EJA.0000000000000761]
Acosta CM, Lopez Vargas MP, Oropel F, Valente L, Ricci L, Natal M, Suarez Sipmann F, Tusman G (2021) Prevention of atelectasis by continuous positive airway pressure in anaesthetised children: a randomised controlled study. Eur J Anaesthesiol 38:41–48. https://doi.org/10.1097/EJA.0000000000001351
[DOI: 10.1097/EJA.0000000000001351]
Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG (2017) Volume-targeted versus pressure-limited ventilation in neonates. Cochrane database Syst Rev 10:CD003666. https://doi.org/10.1002/14651858.CD003666.pub4
[DOI: 10.1002/14651858.CD003666.pub4]
Shono A, Katayama N, Fujihara T, Böhm SH, Waldmann AD, Ugata K, Nikai T, Saito Y (2020) Positive end-expiratory pressure and distribution of ventilation in pneumoperitoneum combined with steep trendelenburg position. Anesthesiology 132:476–490. https://doi.org/10.1097/ALN.0000000000003062
[DOI: 10.1097/ALN.0000000000003062]
Cinnella G, Grasso S, Spadaro S, Rauseo M, Mirabella L, Salatto P, De Capraris A, Nappi L, Greco P, Dambrosio M (2013) Effects of recruitment maneuver and positive end-expiratory pressure on respiratory mechanics and transpulmonary pressure during laparoscopic surgery. Anesthesiology 118:114–122. https://doi.org/10.1097/ALN.0b013e3182746a10
[DOI: 10.1097/ALN.0b013e3182746a10]
Cheifetz IM (2017) Pediatric ARDS. Respir Care 62:718–731. https://doi.org/10.4187/respcare.05591
[DOI: 10.4187/respcare.05591]
Villanueva J, Killian M, Chaudhry R (2019) Robotic urologic surgery in the infant: a review. Curr Urol Rep 20:35. https://doi.org/10.1007/s11934-019-0902-8
[DOI: 10.1007/s11934-019-0902-8]
Morales-López RA, Pérez-Marchán M, Pérez Brayfield M (2019) Current concepts in pediatric robotic assisted pyeloplasty. Front Pediatr 7:4. https://doi.org/10.3389/fped.2019.00004
[DOI: 10.3389/fped.2019.00004]
Terrier G (1999) Anaesthesia for laparoscopic procedures in infants and children: indications, intra- and post-operative management, prevention and treatment of complications. Curr Opin Anaesthesiol 12:311–314. https://doi.org/10.1097/00001503-199906000-00009
[DOI: 10.1097/00001503-199906000-00009]
Sood J (2014) Advancing frontiers in anaesthesiology with laparoscopy. World J Gastroenterol 20:14308–14314. https://doi.org/10.3748/wjg.v20.i39.14308
[DOI: 10.3748/wjg.v20.i39.14308]
Abdel-Ghaffar HS, Youseff HA, Abdelal FA, Osman MA, Sayed JA, Riad MAF, Abdel-Rady MM (2019) Post-extubation continuous positive airway pressure improves oxygenation after pediatric laparoscopic surgery: a randomized controlled trial. Acta Anaesthesiol Scand 63:620–629. https://doi.org/10.1111/aas.13324
[DOI: 10.1111/aas.13324]
Sümpelmann R, Mader T, Eich C, Witt L, Osthaus WA (2010) A novel isotonic-balanced electrolyte solution with 1% glucose for intraoperative fluid therapy in children: results of a prospective multicentre observational post-authorization safety study (PASS). Paediatr Anaesth 20:977–981. https://doi.org/10.1111/j.1460-9592.2010.03428.x
[DOI: 10.1111/j.1460-9592.2010.03428.x]
Sümpelmann R, Mader T, Dennhardt N, Witt L, Eich C, Osthaus WA (2011) A novel isotonic balanced electrolyte solution with 1% glucose for intraoperative fluid therapy in neonates: results of a prospective multicentre observational postauthorisation safety study (PASS). Paediatr Anaesth 21:1114–1118. https://doi.org/10.1111/j.1460-9592.2011.03610.x
[DOI: 10.1111/j.1460-9592.2011.03610.x]
Mandee S, Butmangkun W, Aroonpruksakul N, Tantemsapya N, von Bormann B, Suraseranivongse S (2015) Effects of a restrictive fluid regimen in pediatric patients undergoing major abdominal surgery. Paediatr Anaesth 25:530–537. https://doi.org/10.1111/pan.12589
[DOI: 10.1111/pan.12589]
Bailey AG, McNaull PP, Jooste E, Tuchman JB (2010) Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Anesth Analg 110:375–390. https://doi.org/10.1213/ANE.0b013e3181b6b3b5
[DOI: 10.1213/ANE.0b013e3181b6b3b5]
Sümpelmann R, Becke K, Brenner S, Breschan C, Eich C, Höhne C, Jöhr M, Kretz F-J, Marx G, Pape L, Schreiber M, Strauss J, Weiss M (2017) Perioperative intravenous fluid therapy in children: guidelines from the association of the scientific medical societies in Germany. Paediatr Anaesth 27:10–18. https://doi.org/10.1111/pan.13007
[DOI: 10.1111/pan.13007]
Frykholm P, Disma N, Andersson H, Beck C, Bouvet L, Cercueil E, Elliott E, Hofmann J, Isserman R, Klaucane A, Kuhn F, de Queiroz SM, Rosen D, Rudolph D, Schmidt AR, Schmitz A, Stocki D, Sümpelmann R, Stricker PA, Thomas M, Veyckemans F, Afshari A (2022) Pre-operative fasting in children: a guideline from the European society of anaesthesiology and intensive care. Eur J Anaesthesiol 39:4–25. https://doi.org/10.1097/EJA.0000000000001599
[DOI: 10.1097/EJA.0000000000001599]
Sümpelmann R, Becke K, Crean P, Jöhr M, Lönnqvist P-A, Strauss JM, Veyckemans F (2011) European consensus statement for intraoperative fluid therapy in children. Eur J Anaesthesiol 28:637–639. https://doi.org/10.1097/EJA.0b013e3283446bb8
[DOI: 10.1097/EJA.0b013e3283446bb8]
Kalfa N, Allal H, Raux O, Lopez M, Forgues D, Guibal M-P, Picaud J-C, Galifer R-B (2005) Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics 116:e785–e791. https://doi.org/10.1542/peds.2005-0650
[DOI: 10.1542/peds.2005-0650]
McHoney M, Corizia L, Eaton S, Kiely EM, Drake DP, Tan HL, Spitz L, Pierro A (2003) Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg 38:105–110. https://doi.org/10.1053/jpsu.2003.50021
[DOI: 10.1053/jpsu.2003.50021]
de Souza P, Neto E, Grousson S, Duflo F, Ducreux C, Joly H, Convert J, Mottolese C, Dailler F, Cannesson M (2011) Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br J Anaesth 106:856–864. https://doi.org/10.1093/bja/aer090
[DOI: 10.1093/bja/aer090]
Durand P, Chevret L, Essouri S, Haas V, Devictor D (2008) Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med 34:888–894. https://doi.org/10.1007/s00134-008-1021-z
[DOI: 10.1007/s00134-008-1021-z]
Renner J, Broch O, Gruenewald M, Scheewe J, Francksen H, Jung O, Steinfath M, Bein B (2011) Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia 66:582–589. https://doi.org/10.1111/j.1365-2044.2011.06715.x
[DOI: 10.1111/j.1365-2044.2011.06715.x]
Feld LG, Neuspiel DR, Foster BA, Leu MG, Garber MD, Austin K, Basu RK, Conway EEJ, Fehr JJ, Hawkins C, Kaplan RL, Rowe EV, Waseem M, Moritz ML (2018) Clinical practice guideline: maintenance intravenous fluids in children. Pediatrics. https://doi.org/10.1542/peds.2018-3083
[DOI: 10.1542/peds.2018-3083]
Hatipoglu S, Akbulut S, Hatipoglu F, Abdullayev R (2014) Effect of laparoscopic abdominal surgery on splanchnic circulation: historical developments. World J Gastroenterol 20:18165–18176. https://doi.org/10.3748/wjg.v20.i48.18165
[DOI: 10.3748/wjg.v20.i48.18165]
Rist M, Hemmerling TM, Rauh R, Siebzehnrübl E, Jacobi KE (2001) Influence of pneumoperitoneum and patient positioning on preload and splanchnic blood volume in laparoscopic surgery of the lower abdomen. J Clin Anesth 13:244–249. https://doi.org/10.1016/s0952-8180(01)00242-2
[DOI: 10.1016/s0952-8180(01)00242-2]
Nishina K, Mikawa K, Maekawa N, Asano M, Obara H (1995) Effects of exogenous intravenous glucose on plasma glucose and lipid homeostasis in anesthetized infants. Anesthesiology 83:258–263. https://doi.org/10.1097/00000542-199508000-00004
[DOI: 10.1097/00000542-199508000-00004]
Zhang Y, Wang S, Sun Y (2015) Anesthesia of robotic thoracic surgery. Ann Transl Med 3:71. https://doi.org/10.3978/j.issn.2305-5839.2015.03.03
[DOI: 10.3978/j.issn.2305-5839.2015.03.03]
Gruppo di Studio SIAARTI per la Sicurezza in Anestesia (2012) Standard per il monitoraggio in anestesia. https://d1c2gz5q23tkk0.cloudfront.net/assets/uploads/3019643/asset/Standard_monitoraggio_anestesia_edizione_2012.pdf?1607087559 . Accessed 18 Nov 2021
Park WY, Lee KH, Lee YB, Kim MH, Lim HK, Choi JB (2017) Effects of combined rocuronium and cisatracurium in laparoscopic cholecystectomy. J lifestyle Med 7:35–40. https://doi.org/10.15280/jlm.2017.7.1.35
[DOI: 10.15280/jlm.2017.7.1.35]
Martinez-Ubieto J, Ortega-Lucea S, Pascual-Bellosta A, Arazo-Iglesias I, Gil-Bona J, Jimenez-Bernardó T, Muñoz-Rodriguez L (2016) Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reversed with neostigmine versus sugammadex. Minerva Anestesiol 82:735–742
[PMID: 26472231]
Murphy GS, Brull SJ (2010) Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 111:120–128. https://doi.org/10.1213/ANE.0b013e3181da832d
[DOI: 10.1213/ANE.0b013e3181da832d]
Brull SJ, Murphy GS (2010) Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg 111:129–140. https://doi.org/10.1213/ANE.0b013e3181da8312
[DOI: 10.1213/ANE.0b013e3181da8312]
Lee TY, Jeong SY, Jeong JH, Kim JH, Choi SR (2021) Comparison of postoperative pulmonary complications between sugammadex and neostigmine in lung cancer patients undergoing video-assisted thoracoscopic lobectomy: a prospective double-blinded randomized trial. Anesth pain Med 16:60–67. https://doi.org/10.17085/apm.20056
[DOI: 10.17085/apm.20056]
Brull SJ, Kopman AF (2017) Current status of neuromuscular reversal and monitoring: challenges and opportunities. Anesthesiology 126:173–190. https://doi.org/10.1097/ALN.0000000000001409
[DOI: 10.1097/ALN.0000000000001409]
Hristovska AM, Duch P, Allingstrup M, Afshari A (2017) Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane database Syst Rev 8:CD012763. https://doi.org/10.1002/14651858.CD012763
[DOI: 10.1002/14651858.CD012763]
Feltracco P, Tonetti T, Barbieri S, Frigo AC, Ori C (2016) Cisatracurium- and rocuronium-associated residual neuromuscular dysfunction under intraoperative neuromuscular monitoring and postoperative neostigmine reversal: a single-blind randomized trial. J Clin Anesth 35:198–204. https://doi.org/10.1016/j.jclinane.2016.07.031
[DOI: 10.1016/j.jclinane.2016.07.031]
Herring WJ, Woo T, Assaid CA, Lupinacci RJ, Lemmens HJ, Blobner M, Khuenl-Brady KS (2017) Sugammadex efficacy for reversal of rocuronium- and vecuronium-induced neuromuscular blockade: a pooled analysis of 26 studies. J Clin Anesth 41:84–91. https://doi.org/10.1016/j.jclinane.2017.06.006
[DOI: 10.1016/j.jclinane.2017.06.006]
Carron M, Zarantonello F, Tellaroli P, Ori C (2016) Efficacy and safety of sugammadex compared to neostigmine for reversal of neuromuscular blockade: a meta-analysis of randomized controlled trials. J Clin Anesth 35:1–12. https://doi.org/10.1016/j.jclinane.2016.06.018
[DOI: 10.1016/j.jclinane.2016.06.018]
Sammartino M, Volpe B, Sbaraglia F, Garra R, D’Addessi A (2010) Capnography and the bispectral index-their role in pediatric sedation: a brief review. Int J Pediatr 2010:828347. https://doi.org/10.1155/2010/828347
[DOI: 10.1155/2010/828347]
McDermott NB, VanSickle T, Motas D, Friesen RH (2003) Validation of the bispectral index monitor during conscious and deep sedation in children. Anesth Analg 97:39–43. https://doi.org/10.1213/01.ane.0000067402.02136.a2
[DOI: 10.1213/01.ane.0000067402.02136.a2]
Mathur S, Patel J, Goldstein S, Jain A (2021) Bispectral Index. In: StatPearls [Internet]. StatPearls Publishing LLC., Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK539809/ . Accessed 18 Nov 2021
Faasse MA, Lindgren BW, Frainey BT, Marcus CR, Szczodry DM, Glaser AP, Suresh S, Gong EM (2015) Perioperative effects of caudal and transversus abdominis plane (TAP) blocks for children undergoing urologic robot-assisted laparoscopic surgery. J Pediatr Urol 11:121.e1–7. https://doi.org/10.1016/j.jpurol.2014.10.010
[DOI: 10.1016/j.jpurol.2014.10.010]
Suresh S, Ecoffey C, Bosenberg A, Lonnqvist P-A, de Oliveira GSJ, de Leon CO, de Andrés J, Ivani G (2018) The european society of regional anaesthesia and pain therapy/american society of regional anesthesia and pain medicine recommendations on local anesthetics and adjuvants dosage in pediatric regional anesthesia. Reg Anesth Pain Med 43:211–216. https://doi.org/10.1097/AAP.0000000000000702
[DOI: 10.1097/AAP.0000000000000702]
Dal Moro F, Aiello L, Pavarin P, Zattoni F (2019) Ultrasound-guided transversus abdominis plane block (US-TAPb) for robot-assisted radical prostatectomy: a novel “4-point” technique-results of a prospective, randomized study. J Robot Surg 13:147–151. https://doi.org/10.1007/s11701-018-0858-6
[DOI: 10.1007/s11701-018-0858-6]
Srinivasan AK, Shrivastava D, Kurzweil RE, Weiss DA, Long CJ, Shukla AR (2016) Port site local anesthetic infiltration vs single-dose intrathecal opioid injection to control perioperative pain in children undergoing minimal invasive surgery: a comparative analysis. Urology 97:179–183. https://doi.org/10.1016/j.urology.2016.04.064
[DOI: 10.1016/j.urology.2016.04.064]
Molinaro F, Krasniqi P, Scolletta S, Giuntini L, Navarra C, Puzzutiello R, Fusi G, Angotti R, Bindi E, Zanaboni C, Messina M, Mattioli G (2020) Considerations regarding pain management and anesthesiological aspects in pediatric patients undergoing minimally invasive surgery: robotic vs laparoscopic-thoracoscopic approach. J Robot Surg 14:423–430. https://doi.org/10.1007/s11701-019-01005-1
[DOI: 10.1007/s11701-019-01005-1]
Kaye AD, Green JB, Davidson KS, Gennuso SA, Brown ML, Pinner AM, Renschler JS, Cramer KD, Kaye RJ, Cornett EM, Helmstetter JA, Urman RD, Fox CJ (2019) Newer nerve blocks in pediatric surgery. Best Pract Res Clin Anaesthesiol 33:447–463. https://doi.org/10.1016/j.bpa.2019.06.006
[DOI: 10.1016/j.bpa.2019.06.006]
Kim HJ, Lee K-Y, Kim MH, Kim H-I, Bai SJ (2019) Effects of deep vs moderate neuromuscular block on the quality of recovery after robotic gastrectomy. Acta Anaesthesiol Scand 63:306–313. https://doi.org/10.1111/aas.13271
[DOI: 10.1111/aas.13271]
Liu P-P, Wu C, Wu J-Z, Zhang M-Z, Zheng J-J, Shen Y, He P, Sun Y (2018) The prediction probabilities for emergence from sevoflurane anesthesia in children: a comparison of the perfusion index and the bispectral index. Paediatr Anaesth 28:281–286. https://doi.org/10.1111/pan.13324
[DOI: 10.1111/pan.13324]
Shahait M, Yezdani M, Katz B, Lee A, Yu S-J, Lee DI (2019) Robot-assisted transversus abdominis plane block: description of the technique and comparative analysis. J Endourol 33:207–210. https://doi.org/10.1089/end.2018.0828
[DOI: 10.1089/end.2018.0828]
Cacciamani GE, Menestrina N, Pirozzi M, Tafuri A, Corsi P, De Marchi D, Inverardi D, Processali T, Trabacchin N, De Michele M, Sebben M, Cerruto MA, De Marco V, Migliorini F, Porcaro AB, Artibani W (2019) Impact of combination of local anesthetic wounds infiltration and ultrasound transversus abdominal plane block in patients undergoing robot-assisted radical prostatectomy: perioperative results of a double-blind randomized controlled trial. J Endourol 33:295–301. https://doi.org/10.1089/end.2018.0761
[DOI: 10.1089/end.2018.0761]
Kalu R, Boateng P, Carrier L, Garzon J, Tang A, Reickert C, Stefanou A (2021) Effect of preoperative versus postoperative use of transversus abdominis plane block with plain 0.25 % bupivacaine on postoperative opioid use: a retrospective study. BMC Anesthesiol 21:114. https://doi.org/10.1186/s12871-021-01333-6
[DOI: 10.1186/s12871-021-01333-6]
Kim SJ, Barlog JS, Akhavan A (2018) Robotic-assisted urologic surgery in infants: positioning, trocar placement, and physiological considerations. Front Pediatr 6:411. https://doi.org/10.3389/fped.2018.00411
[DOI: 10.3389/fped.2018.00411]
De Waal EEC, Kalkman CJ (2003) Haemodynamic changes during low-pressure carbon dioxide pneumoperitoneum in young children. Paediatr Anaesth 13:18–25. https://doi.org/10.1046/j.1460-9592.2003.00973.x
[DOI: 10.1046/j.1460-9592.2003.00973.x]
Ballouhey Q, Villemagne T, Cros J, Szwarc C, Braik K, Longis B, Lardy H, Fourcade L (2015) A comparison of robotic surgery in children weighing above and below 15.0 kg: size does not affect surgery success. Surg Endosc 29:2643–2650. https://doi.org/10.1007/s00464-014-3982-z
[DOI: 10.1007/s00464-014-3982-z]
Meehan JJ (2009) Robotic surgery in small children: is there room for this? J Laparoendosc Adv Surg Tech A 19:707–712. https://doi.org/10.1089/lap.2008.0178
[DOI: 10.1089/lap.2008.0178]
Ellison JS, Lendvay TS (2017) Robot-assisted ureteroureterostomy in pediatric patients: current perspectives. Robot Surg 4:45–55. https://doi.org/10.2147/RSRR.S99536
[DOI: 10.2147/RSRR.S99536]
Kutikov A, Nguyen M, Guzzo T, Canter D, Casale P (2006) Robot assisted pyeloplasty in the infant-lessons learned. J Urol 176:2237–2240. https://doi.org/10.1016/j.juro.2006.07.059
[DOI: 10.1016/j.juro.2006.07.059]
Abdel Raheem A, Song HJ, Chang KD, Choi YD, Rha KH (2017) Robotic nurse duties in the urology operative room: 11 years of experience. Asian J Urol 4:116–123. https://doi.org/10.1016/j.ajur.2016.09.012
[DOI: 10.1016/j.ajur.2016.09.012]
Kang MJ, De Gagne JC, Kang HS (2016) Perioperative nurses’ work experience with robotic surgery: a focus group study. Comput Inform Nurs 34:152–158. https://doi.org/10.1097/CIN.0000000000000224
[DOI: 10.1097/CIN.0000000000000224]
Bambino Gesù Pediatric Hospital Multidisciplinary Task Force (2009) Linea Guida Profilassi antibiotica in chirurgia pediatrica. http://www.luigivicari.it/med/wp-content/uploads/2012/09/linea-guida-profilassi-antibiotica-in-chirurgia-pediatrica.pdf . Accessed 18 Nov 2021
Greater Glasgow & Clyde Antimicrobial Committee (2019) Antibiotic prophylaxis for paediatric surgery. https://www.clinicalguidelines.scot.nhs.uk/nhsggc-paediatric-clinical-guidelines/nhsggc-guidelines/anaesthetics/antibiotic-prophylaxis-for-paediatric-surgery/ . Accessed 18 Nov 2021
Antimicrobial Stewardship Team (2019) Advocate Aurora Children’s Hospital Pediatric and Neonatal Surgical Prophylaxis Guideline. http://www.advocatedocs.com/wp-content/uploads/2019/07/Pediatric-and-Neonatal-Surgical-Prophylaxis-Guidelines-2019-2020-final.pdf . Accessed 18 Nov 2021
Pio L, Avanzini S, Paraboschi I, Wong M, Naselli A, Garaventa A, Conte M, Rosati U, Losurdo G, Fratino G, Martucciello G, Mattioli G, Castagnola E (2018) Antibiotic prophylaxis in children undergoing abdominal surgery for neoplastic diseases. Le Infez Med 26:122–125
Rosenbaum A, Kain ZN, Larsson P, Lönnqvist P-A, Wolf AR (2009) The place of premedication in pediatric practice. Paediatr Anaesth 19:817–828. https://doi.org/10.1111/j.1460-9592.2009.03114.x
[DOI: 10.1111/j.1460-9592.2009.03114.x]
Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH (2009) The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the pediatric sedation research consortium. Anesth Analg 108:795–804. https://doi.org/10.1213/ane.0b013e31818fc334
[DOI: 10.1213/ane.0b013e31818fc334]
Mallory MD, Baxter AL, Yanosky DJ, Cravero JP (2011) Emergency physician-administered propofol sedation: a report on 25,433 sedations from the pediatric sedation research consortium. Ann Emerg Med 57:462–8.e1. https://doi.org/10.1016/j.annemergmed.2011.03.008
[DOI: 10.1016/j.annemergmed.2011.03.008]
O’Sullivan M, Wong GK (2013) Preinduction techniques to relieve anxiety in children undergoing general anaesthesia. Contin Educ Anaesth Crit Care Pain 13:196–199. https://doi.org/10.1093/BJACEACCP/MKT014
[DOI: 10.1093/BJACEACCP/MKT014]
Chow CHT, Van Lieshout RJ, Schmidt LA, Dobson KG, Buckley N (2016) Systematic review: audiovisual interventions for reducing preoperative anxiety in children undergoing elective surgery. J Pediatr Psychol 41:182–203. https://doi.org/10.1093/jpepsy/jsv094
[DOI: 10.1093/jpepsy/jsv094]
World Health Organization (2009) WHO Guidelines for Safe Surgery 2009. http://apps.who.int/iris/bitstream/handle/10665/44185/9789241598552_eng.pdf;jsessionid=12B98A79FEB8E02A3A11C237DF083867?sequence=1 . Accessed 18 Nov 2021
MacCraith E, Forde JC, Davis NF (2019) Robotic simulation training for urological trainees: a comprehensive review on cost, merits and challenges. J Robot Surg 13:371–377. https://doi.org/10.1007/s11701-019-00934-1
[DOI: 10.1007/s11701-019-00934-1]
Chow AK, Wong R, Monda S, Bhatt R, Sands KG, Vetter J, Badhiwala N, DeClue A, Kim EH, Sivaraman A, Venkatesh R, Figenshau RS, Du K (2021) Ex vivo porcine model for robot-assisted partial nephrectomy simulation at a high-volume tertiary center: resident perception and validation assessment using the global evaluative assessment of robotic skills tool. J Endourol 35:878–884. https://doi.org/10.1089/end.2020.0590
[DOI: 10.1089/end.2020.0590]
Timberlake MD, Garbens A, Schlomer BJ, Kavoussi NL, Kern AJM, Peters CA, Gahan JC (2020) Design and validation of a low-cost, high-fidelity model for robotic pyeloplasty simulation training. J Pediatr Urol 16:332–339. https://doi.org/10.1016/j.jpurol.2020.02.003
[DOI: 10.1016/j.jpurol.2020.02.003]
Azadi S, Green IC, Arnold A, Truong M, Potts J, Martino MA (2021) Robotic surgery: the impact of simulation and other innovative platforms on performance and training. J Minim Invasive Gynecol 28:490–495. https://doi.org/10.1016/j.jmig.2020.12.001
[DOI: 10.1016/j.jmig.2020.12.001]
Lingard L, Espin S, Rubin B, Whyte S, Colmenares M, Baker GR, Doran D, Grober E, Orser B, Bohnen J, Reznick R (2005) Getting teams to talk: development and pilot implementation of a checklist to promote interprofessional communication in the OR. Qual Saf Health Care 14:340–346. https://doi.org/10.1136/qshc.2004.012377
[DOI: 10.1136/qshc.2004.012377]
Baggs JG, Schmitt MH, Mushlin AI, Mitchell PH, Eldredge DH, Oakes D, Hutson AD (1999) Association between nurse-physician collaboration and patient outcomes in three intensive care units. Crit Care Med 27:1991–1998. https://doi.org/10.1097/00003246-199909000-00045
[DOI: 10.1097/00003246-199909000-00045]
Morey JC, Simon R, Jay GD, Wears RL, Salisbury M, Dukes KA, Berns SD (2002) Error reduction and performance improvement in the emergency department through formal teamwork training: evaluation results of the MedTeams project. Health Serv Res 37:1553–1581. https://doi.org/10.1111/1475-6773.01104
[DOI: 10.1111/1475-6773.01104]
Awad SS, Fagan SP, Bellows C, Albo D, Green-Rashad B, De la Garza M, Berger DH (2005) Bridging the communication gap in the operating room with medical team training. Am J Surg 190:770–774. https://doi.org/10.1016/j.amjsurg.2005.07.018
[DOI: 10.1016/j.amjsurg.2005.07.018]
Pronovost P, Berenholtz S, Dorman T, Lipsett PA, Simmonds T, Haraden C (2003) Improving communication in the ICU using daily goals. J Crit Care 18:71–75. https://doi.org/10.1053/jcrc.2003.50008
[DOI: 10.1053/jcrc.2003.50008]
Bhakhri K, Harrison-Phipps K, Harling L, Routledge T (2021) Should robotic surgery simulation be introduced in the core surgical training curriculum? Front Surg 8:595203. https://doi.org/10.3389/fsurg.2021.595203
[DOI: 10.3389/fsurg.2021.595203]
American Urological Association (2016) Robotic Surgery (Urologic) Standard Operating Procedure (SOP). https://www.auanet.org//guidelines-and-quality/guidelines/other-clinical-guidance/robotic-surgery-(urologic)-sop . Accessed Dec 12 2021
Sforza S, Di Maida F, Mari A, Zaccaro C, Cini C, Tellini R, Carini M, Minervini A, Masieri L (2019) Is a drainage placement still necessary after robotic reconstruction of the upper urinary tract in children? experience from a tertiary referral center. J Laparoendosc Adv Surg Tech A 29:1180–1184. https://doi.org/10.1089/lap.2019.0302
[DOI: 10.1089/lap.2019.0302]
Modrzyk A, Pasierbek MJ, Korlacki W, Grabowski A (2020) Introducing enhanced recovery after surgery protocol in pediatric surgery. Adv Clin Exp Med 29:937–942. https://doi.org/10.17219/acem/121931
[DOI: 10.17219/acem/121931]
Han DS, Brockel MA, Boxley PJ, Dönmez Mİ, Saltzman AF, Wilcox DT, Rove KO (2021) Enhanced recovery after surgery and anesthetic outcomes in pediatric reconstructive urologic surgery. Pediatr Surg Int 37:151–159. https://doi.org/10.1007/s00383-020-04775-0
[DOI: 10.1007/s00383-020-04775-0]
Vittinghoff M, Lönnqvist P-A, Mossetti V, Heschl S, Simic D, Colovic V, Dmytriiev D, Hölzle M, Zielinska M, Kubica-Cielinska A, Lorraine-Lichtenstein E, Budić I, Karisik M, Maria BDJ, Smedile F, Morton NS (2018) Postoperative pain management in children: guidance from the pain committee of the European Society for Paediatric Anaesthesiology (ESPA Pain Management Ladder Initiative). Paediatr Anaesth 28:493–506. https://doi.org/10.1111/pan.13373
[DOI: 10.1111/pan.13373]
Nielsen RV, Siegel H, Fomsgaard JS, Andersen JDH, Martusevicius R, Mathiesen O, Dahl JB (2015) Preoperative dexamethasone reduces acute but not sustained pain after lumbar disk surgery: a randomized, blinded, placebo-controlled trial. Pain 156:2538–2544. https://doi.org/10.1097/j.pain.0000000000000326
[DOI: 10.1097/j.pain.0000000000000326]
Hermans V, De Pooter F, De Groote F, De Hert S, Van der Linden P (2012) Effect of dexamethasone on nausea, vomiting, and pain in paediatric tonsillectomy. Br J Anaesth 109:427–431. https://doi.org/10.1093/bja/aes249
[DOI: 10.1093/bja/aes249]
Corcoran T, Kasza J, Short TG, O’Loughlin E, Chan MTV, Leslie K, Forbes A, Paech M, Myles P (2017) Intraoperative dexamethasone does not increase the risk of postoperative wound infection: a propensity score-matched post hoc analysis of the ENIGMA-II trial (EnDEX). Br J Anaesth 118:190–199. https://doi.org/10.1093/bja/aew446
[DOI: 10.1093/bja/aew446]
Liu J, Li H, Zhang J, Dong X, Xue J, Shi X, Yang K (2020) Dexamethasone or combined with others for postoperative nausea and vomiting in children: A systematic review. Asian J Surg 43:873–879. https://doi.org/10.1016/j.asjsur.2019.11.012
[DOI: 10.1016/j.asjsur.2019.11.012]
Yeh A, Butler G, Strotmeyer S, Austin K, Visoiu M, Cladis F, Malek M (2020) ERAS protocol for pediatric laparoscopic cholecystectomy promotes safe and early discharge. J Pediatr Surg 55:96–100. https://doi.org/10.1016/j.jpedsurg.2019.09.053
[DOI: 10.1016/j.jpedsurg.2019.09.053]
Sayed JA, Mohamed AF, Riad MO, Ali M (2016) Comparison of dexamethasone or intravenous fluids or combination of both on postoperative nausea, vomiting and pain in pediatric strabismus surgery. J Clin Anesth 34:136–142. https://doi.org/10.1016/j.jclinane.2016.03.049
[DOI: 10.1016/j.jclinane.2016.03.049]
Chong MA, Szoke DJ, Berbenetz NM, Lin C (2018) Dexamethasone as an adjuvant for caudal blockade in pediatric surgical patients: a systematic review and meta-analysis. Anesth Analg 127:520–528. https://doi.org/10.1213/ANE.0000000000003346
[DOI: 10.1213/ANE.0000000000003346]
Eberhart LHJ, Geldner G, Kranke P, Morin AM, Schäuffelen A, Treiber H, Wulf H (2004) The development and validation of a risk score to predict the probability of postoperative vomiting in pediatric patients. Anesth Analg 99:1630–1637
[DOI: 10.1213/01.ANE.0000135639.57715.6C]
Gan TJ, Belani KG, Bergese S, Chung F, Diemunsch P, Habib AS, Jin Z, Kovac AL, Meyer TA, Urman RD, Apfel CC, Ayad S, Beagley L, Candiotti K, Englesakis M, Hedrick TL, Kranke P, Lee S, Lipman D, Minkowitz HS, Morton J, Philip BK (2020) Fourth consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg 131:411–448. https://doi.org/10.1213/ANE.0000000000004833
[DOI: 10.1213/ANE.0000000000004833]
Kovac AL (2021) Postoperative nausea and vomiting in pediatric patients. Paediatr Drugs 23:11–37. https://doi.org/10.1007/s40272-020-00424-0
[DOI: 10.1007/s40272-020-00424-0]
Ames WA, Machovec K (2020) An update on the management of PONV in a pediatric patient. Best Pract Res Clin Anaesthesiol 34:749–758. https://doi.org/10.1016/j.bpa.2020.05.007
[DOI: 10.1016/j.bpa.2020.05.007]
Höhne C (2014) Postoperative nausea and vomiting in pediatric anesthesia. Curr Opin Anaesthesiol 27:303–308. https://doi.org/10.1097/ACO.0000000000000073
[DOI: 10.1097/ACO.0000000000000073]
Morgan J, Checketts M, Arana A, Chalmers E, Maclean J, Powis M, Morton N (2018) Prevention of perioperative venous thromboembolism in pediatric patients: guidelines from the Association of Paediatric Anaesthetists of Great Britain and Ireland (APAGBI). Paediatr Anaesth 28:382–391. https://doi.org/10.1111/pan.13355
[DOI: 10.1111/pan.13355]
MacNevin W, Padhye K, Alkhalife Y, Price V, El-Hawary R, Branchford BR, Stevens S, Kulkarni K (2021) Optimizing pharmacologic thromboprophylaxis use in pediatric orthopedic surgical patients through implementation of a perioperative venous thromboembolism risk screening tool. Pediatr Blood Cancer 68:e28803. https://doi.org/10.1002/pbc.28803
[DOI: 10.1002/pbc.28803]
Branchford BR, Betensky M, Goldenberg NA (2018) Pediatric issues in thrombosis and hemostasis: the how and why of venous thromboembolism risk stratification in hospitalized children. Thromb Res 172:190–193. https://doi.org/10.1016/j.thromres.2018.02.010
[DOI: 10.1016/j.thromres.2018.02.010]
Association of Paediatric Anaesthetists of Great Britain and Ireland (2017) Prevention of Peri-operative Venous Thromboembolism in Paediatric Patients. https://www.apagbi.org.uk/sites/default/files/inline-files/APA%20Thromboprophylaxis%20guidelines%20final.pdf . Accessed Nov 18 2021
Jackson PC, Morgan JM (2008) Perioperative thromboprophylaxis in children: development of a guideline for management. Paediatr Anaesth 18:478–487. https://doi.org/10.1111/j.1460-9592.2008.02597.x
[DOI: 10.1111/j.1460-9592.2008.02597.x]