Analytical methods for correlated data arising from multicenter hearing studies.

Yanghui Sheng, Ce Yang, Sharon Curhan, Gary Curhan, Molin Wang
Author Information
  1. Yanghui Sheng: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. ORCID
  2. Ce Yang: Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. ORCID
  3. Sharon Curhan: Harvard Medical School, Boston, Massachusetts, USA.
  4. Gary Curhan: Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
  5. Molin Wang: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. ORCID

Abstract

In epidemiological hearing studies, estimating the association between exposures and hearing loss using audiometrically-assessed hearing measurements is challenging due to the complex correlation structure in the clustered data, with clusters formed by the two ears of the same individual and the testing site and audiologist. We propose a linear mixed-effects model to take into account the multilevel correlation structures of the data. Both theoretically and in simulation studies, we compare single-ear linear regression models commonly used in published hearing loss studies with the proposed both-ears linear mixed models properly accounting for the multi-level correlations. Our findings include (1) when there are only participant-level covariates, the worse-ear linear regression models produce unbiased but typically less efficient estimators than the both-ear and average-ear approaches; (2) when there are ear-level confounders, the worse-ear method may lead to biased estimators and the average-ear method produces unbiased but typically less efficient estimators than the both-ear method; (3) the both-ear method may gain efficiency when additionally adjusting for testing sites and audiologists. As an illustrative example, we applied the single-ear and both-ear methods to assess aspirin-hearing association in the Nurses' Health Study II.

Keywords

References

  1. Am J Epidemiol. 2020 Mar 2;189(3):204-214 [PMID: 31608356]
  2. Biometrika. 1967 Jun;54(1):93-108 [PMID: 6049561]
  3. JAMA Intern Med. 2013 Feb 25;173(4):293-9 [PMID: 23337978]
  4. J Gerontol A Biol Sci Med Sci. 2014 Jun;69(6):759-65 [PMID: 24149430]
  5. Front Hum Neurosci. 2013 Dec 16;7:837 [PMID: 24379769]
  6. Biostatistics. 2013 Jan;14(1):144-59 [PMID: 22930674]
  7. Int J Audiol. 2010 Sep;49(9):628-33 [PMID: 20553102]
  8. Ear Hear. 2010 Jun;31(3):407-12 [PMID: 20124901]
  9. J Adv Res. 2016 Jan;7(1):59-68 [PMID: 26843971]
  10. Ann Appl Stat. 2020 Sep;14(3):1146-1163 [PMID: 33633815]
  11. Ear Hear. 1990 Aug;11(4):247-56 [PMID: 2210098]
  12. Gerontologist. 2003 Oct;43(5):661-8 [PMID: 14570962]
  13. Stat Med. 1997 Nov 15;16(21):2475-88 [PMID: 9364655]
  14. JAMA. 1998 Jun 3;279(21):1715-9 [PMID: 9624024]
  15. Arch Otolaryngol Head Neck Surg. 2003 Oct;129(10):1041-6 [PMID: 14568784]
  16. Ann Intern Med. 2008 Jul 1;149(1):1-10 [PMID: 18559825]
  17. Occup Environ Med. 2003 Mar;60(3):227-34; quiz 164, 234 [PMID: 12598677]
  18. Am J Epidemiol. 2010 Jan 15;171(2):260-6 [PMID: 20008889]
  19. Otolaryngol Head Neck Surg. 2014 Mar;150(3):378-84 [PMID: 24384545]
  20. Stat Med. 1991 Sep;10(9):1453-64 [PMID: 1925173]
  21. N Engl J Med. 2017 Dec 21;377(25):2465-2473 [PMID: 29262274]
  22. Audiol Neurootol. 2018;23(5):290-297 [PMID: 30537711]
  23. PLoS One. 2020 Apr 23;15(4):e0232112 [PMID: 32324804]
  24. J Gerontol B Psychol Sci Soc Sci. 2004 May;59(3):S190-6 [PMID: 15118025]
  25. Int J Audiol. 2003 Mar;42(2):89-105 [PMID: 12641392]
  26. Ear Hear. 2022 Sep-Oct 01;43(5):1447-1455 [PMID: 35302530]

Grants

  1. R01 DC017717/United States
  2. U01 CA176726/United States
  3. U01 DC010811/United States
  4. U01 HL145386/United States

MeSH Term

Humans
Hearing
Hearing Loss
Aspirin

Chemicals

Aspirin

Word Cloud

Created with Highcharts 10.0.0hearingdatamethodstudieslinearboth-earsingle-earmodelsestimatorsassociationlosscorrelationclusteredearstestingmixed-effectsmodelregressionmulti-levelworse-earunbiasedtypicallylessefficientaverage-earmaymethodsepidemiologicalestimatingexposuresusingaudiometrically-assessedmeasurementschallengingduecomplexstructureclustersformedtwoindividualsiteaudiologistproposetakeaccountmultilevelstructurestheoreticallysimulationcomparecommonlyusedpublishedproposedboth-earsmixedproperlyaccountingcorrelationsfindingsinclude1participant-levelcovariatesproduceapproaches2ear-levelconfoundersleadbiasedproduces3gainefficiencyadditionallyadjustingsitesaudiologistsillustrativeexampleappliedassessaspirin-hearingNurses'HealthStudyIIAnalyticalcorrelatedarisingmulticenteraudiometryanalysiscluster

Similar Articles

Cited By (4)