The genetic architecture of phenotypic diversity in the Betta fish ().

Wanchang Zhang, Hongru Wang, Débora Y C Brandt, Beijuan Hu, Junqing Sheng, Mengnan Wang, Haijiang Luo, Yahui Li, Shujie Guo, Bin Sheng, Qi Zeng, Kou Peng, Daxian Zhao, Shaoqing Jian, Di Wu, Junhua Wang, Guang Zhao, Jun Ren, Wentian Shi, Joep H M van Esch, Sirawut Klingunga, Rasmus Nielsen, Yijiang Hong
Author Information
  1. Wanchang Zhang: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  2. Hongru Wang: Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ORCID
  3. Débora Y C Brandt: Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ORCID
  4. Beijuan Hu: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  5. Junqing Sheng: School of Life Sciences, Nanchang University, Nanchang 330031, China.
  6. Mengnan Wang: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  7. Haijiang Luo: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  8. Yahui Li: Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA. ORCID
  9. Shujie Guo: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  10. Bin Sheng: School of Life Sciences, Nanchang University, Nanchang 330031, China.
  11. Qi Zeng: School of Life Sciences, Nanchang University, Nanchang 330031, China.
  12. Kou Peng: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  13. Daxian Zhao: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  14. Shaoqing Jian: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  15. Di Wu: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  16. Junhua Wang: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  17. Guang Zhao: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID
  18. Jun Ren: College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
  19. Wentian Shi: Faculty of Philosophy, University of Tübingen, Tübingen 72074, Germany.
  20. Joep H M van Esch: Biology and Medical Laboratory Research, Rotterdam University of Applied Sciences, Rotterdam 3015, Netherlands.
  21. Sirawut Klingunga: Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
  22. Rasmus Nielsen: Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ORCID
  23. Yijiang Hong: School of Life Sciences, Nanchang University, Nanchang 330031, China. ORCID

Abstract

The Betta fish displays a remarkable variety of phenotypes selected during domestication. However, the genetic basis underlying these traits remains largely unexplored. Here, we report a high-quality genome assembly and resequencing of 727 individuals representing diverse morphotypes of the Betta fish. We show that current breeds have a complex domestication history with extensive introgression with wild species. Using a genome-wide association study, we identify the genetic basis of multiple traits, including coloration patterns, the "Dumbo" phenotype with pectoral fin outgrowth, extraordinary enlargement of body size that we map to a major locus on chromosome 8, the sex determination locus that we map to , and the long-fin phenotype that maps to the locus containing . We also identify a polygenic signal related to aggression, involving multiple neural system-related genes such as , , and . Our study provides a resource for developing the Betta fish as a genetic model for morphological and behavioral research in vertebrates.

References

  1. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  2. Front Genet. 2014 Sep 29;5:340 [PMID: 25324858]
  3. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  4. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  5. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12604-9 [PMID: 15310849]
  6. J Clin Invest. 2017 May 1;127(5):1856-1872 [PMID: 28394261]
  7. Eur J Med Genet. 2019 Jan;62(1):15-20 [PMID: 29729439]
  8. Mol Biol Evol. 2013 Aug;30(8):1788-802 [PMID: 23709261]
  9. Science. 1979 Feb 2;203(4379):410-5 [PMID: 760198]
  10. Mob DNA. 2015 Jun 02;6:11 [PMID: 26045719]
  11. Methods Mol Biol. 2019;1962:1-14 [PMID: 31020551]
  12. Hum Mutat. 2005 Mar;25(3):270-7 [PMID: 15714520]
  13. Annu Rev Genomics Hum Genet. 2020 Aug 31;21:437-463 [PMID: 32283949]
  14. Science. 2019 Sep 20;365(6459):1267-1273 [PMID: 31416932]
  15. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  16. Nat Biotechnol. 2012 Aug;30(8):771-6 [PMID: 22797562]
  17. Science. 2018 May 11;360(6389):645-648 [PMID: 29748283]
  18. Genome Biol. 2012;13(4):244 [PMID: 22546202]
  19. Sci Adv. 2022 Mar 11;8(10):eabm4950 [PMID: 35263139]
  20. Mol Biol Evol. 2021 Jul 29;38(8):3383-3396 [PMID: 33871625]
  21. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  22. Mech Dev. 2013 Jun-Aug;130(6-8):391-5 [PMID: 23127797]
  23. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  24. PLoS Genet. 2017 Jul 17;13(7):e1006916 [PMID: 28715421]
  25. Nature. 2009 Sep 10;461(7261):267-71 [PMID: 19710650]
  26. Science. 1934 Apr 6;79(2049):318-9 [PMID: 17738688]
  27. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  28. Nat Genet. 2000 Apr;24(4):415-9 [PMID: 10742109]
  29. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 [PMID: 15961478]
  30. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  31. BMC Biol. 2017 Apr 27;15(1):32 [PMID: 28449681]
  32. Am J Med Genet B Neuropsychiatr Genet. 2016 Sep;171(6):797-805 [PMID: 26990377]
  33. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  34. Nat Genet. 2012 Jun 17;44(7):821-4 [PMID: 22706312]
  35. Nature. 2021 Apr;592(7856):737-746 [PMID: 33911273]
  36. Genome Res. 2000 Apr;10(4):516-22 [PMID: 10779491]
  37. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  38. JAMA Psychiatry. 2013 Jun;70(6):591-8 [PMID: 23575746]
  39. Methods. 2012 Nov;58(3):268-76 [PMID: 22652625]
  40. Genetics. 2018 Oct;210(2):719-731 [PMID: 30131346]
  41. Am J Hum Genet. 2016 Jan 7;98(1):116-26 [PMID: 26748515]
  42. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  43. Cell Res. 2019 Dec;29(12):1027-1034 [PMID: 31729466]
  44. Gigascience. 2018 Nov 1;7(11): [PMID: 30010754]
  45. PLoS Genet. 2014 Jan;10(1):e1004080 [PMID: 24453984]
  46. Genome Res. 2000 Apr;10(4):511-5 [PMID: 10779490]
  47. G3 (Bethesda). 2020 Jul 7;10(7):2179-2183 [PMID: 32385046]
  48. Bioinformatics. 2007 May 1;23(9):1061-7 [PMID: 17332020]
  49. BMC Genomics. 2020 Jan 16;21(1):54 [PMID: 31948394]
  50. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9 [PMID: 14681372]
  51. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  52. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  53. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  54. Genetics. 2017 Nov;207(3):993-1006 [PMID: 28882990]
  55. PLoS Genet. 2012;8(11):e1002967 [PMID: 23166502]
  56. Biochem J. 1993 Jul 1;293 ( Pt 1):51-64 [PMID: 8328972]
  57. BMC Bioinformatics. 2006 Feb 09;7:62 [PMID: 16469098]
  58. Development. 2021 Jun 1;148(11): [PMID: 34061172]
  59. Pigment Cell Res. 2006 Jun;19(3):243-7 [PMID: 16704459]
  60. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  61. Genetics. 2020 Aug;215(4):1067-1084 [PMID: 32546498]
  62. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  63. Nature. 2016 Sep 8;537(7619):225-228 [PMID: 27533041]
  64. PLoS One. 2011;6(7):e22542 [PMID: 21799892]
  65. Genome Res. 2014 Dec;24(12):2041-9 [PMID: 25327137]
  66. BMC Biol. 2022 Jan 7;20(1):5 [PMID: 34996452]
  67. Oncogene. 2012 Jan 12;31(2):238-50 [PMID: 21666719]
  68. Front Zool. 2019 Aug 8;16:34 [PMID: 31406496]
  69. BMC Bioinformatics. 2014 Nov 25;15:356 [PMID: 25420514]
  70. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  71. Dev Biol. 2019 Dec 15;456(2):164-178 [PMID: 31472116]
  72. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  73. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  74. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  75. Nat Biotechnol. 2013 Dec;31(12):1119-25 [PMID: 24185095]
  76. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11778-83 [PMID: 12193652]
  77. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  78. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  79. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  80. EMBO J. 2011 May 13;30(13):2675-89 [PMID: 21572392]
  81. Curr Opin Struct Biol. 2001 Feb;11(1):39-46 [PMID: 11179890]
  82. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  83. J Clin Neurol. 2009 Dec;5(4):192-4 [PMID: 20076801]
  84. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  85. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  86. PeerJ Comput Sci. 2020 Jan 20;6:e251 [PMID: 33816903]
  87. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  88. PLoS One. 2008 Jul 30;3(7):e2837 [PMID: 18665231]
  89. EMBO Rep. 2020 May 6;21(5):e48204 [PMID: 32207244]
  90. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]
  91. Brain. 2021 Nov 29;144(10):3050-3060 [PMID: 33876820]
  92. Ecol Evol. 2020 Nov 19;10(24):14256-14271 [PMID: 33391713]

MeSH Term

Aggression
Animals
Fishes
Genome-Wide Association Study
Phenotype
Sequence Analysis, DNA

Word Cloud

Created with Highcharts 10.0.0BettafishgeneticlocusdomesticationbasistraitsstudyidentifymultiplephenotypemapdisplaysremarkablevarietyphenotypesselectedHoweverunderlyingremainslargelyunexploredreporthigh-qualitygenomeassemblyresequencing727individualsrepresentingdiversemorphotypesshowcurrentbreedscomplexhistoryextensiveintrogressionwildspeciesUsinggenome-wideassociationincludingcolorationpatterns"Dumbo"pectoralfinoutgrowthextraordinaryenlargementbodysizemajorchromosome8sexdeterminationlong-finmapscontainingalsopolygenicsignalrelatedaggressioninvolvingneuralsystem-relatedgenesprovidesresourcedevelopingmodelmorphologicalbehavioralresearchvertebratesarchitecturephenotypicdiversity

Similar Articles

Cited By