Cross-reactivity of SARS-CoV-2- and influenza A-specific T cells in individuals exposed to SARS-CoV-2.

Worarat Chaisawangwong, Hanzhi Wang, Theodore Kouo, Sebastian F Salathe, Ariel Isser, Joan Glick Bieler, Maya L Zhang, Natalie K Livingston, Shuyi Li, Joseph J Horowitz, Ron E Samet, Israel Zyskind, Avi Z Rosenberg, Jonathan P Schneck
Author Information
  1. Worarat Chaisawangwong: Department of Pathology, School of Medicine.
  2. Hanzhi Wang: Department of Biomedical Engineering, Whiting School of Engineering.
  3. Theodore Kouo: Department of Pediatrics, Division of Emergency Medicine.
  4. Sebastian F Salathe: Department of Pathology, School of Medicine.
  5. Ariel Isser: Department of Biomedical Engineering, School of Medicine, and.
  6. Joan Glick Bieler: Department of Pathology, School of Medicine.
  7. Maya L Zhang: Department of Biomedical Engineering, Whiting School of Engineering.
  8. Natalie K Livingston: Department of Biomedical Engineering, School of Medicine, and.
  9. Shuyi Li: Department of Pathology, School of Medicine.
  10. Joseph J Horowitz: ExpressCare Urgent Care, Bel Air, Maryland, USA.
  11. Ron E Samet: Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
  12. Israel Zyskind: Department of Pediatrics, NYU Langone Medical Center, New York, New York, USA; Maimonides Medical Center, New York, New York, USA.
  13. Avi Z Rosenberg: Department of Pathology, School of Medicine.
  14. Jonathan P Schneck: Department of Pathology, School of Medicine.

Abstract

Cross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses. Using artificial antigen-presenting cells (aAPCs) combined with real-time reverse-transcription PCR (RT-qPCR), we developed a sensitive assay to quickly screen for antigen-specific T cell responses and detected a significant correlation between responses to SARS-CoV-2 epitopes and IAV dominant epitope (M158-66). Further analysis showed that some COVID-19 convalescent donors exhibited both T cell receptor (TCR) specificity and functional cytokine responses to multiple SARS-CoV-2 epitopes and M158-66. Utilizing an aAPC-based stimulation/expansion assay, we detected cross-reactive T cells with specificity to SARS-CoV-2 and IAV. In addition, TCR sequencing of the cross-reactive and IAV-specific T cells revealed similarities between the TCR repertoires of the two populations. These results indicate that heterologous immunity shaped by our exposure to other unrelated endemic viruses may affect our immune response to novel viruses such as SARS-CoV-2.

Keywords

References

  1. Front Immunol. 2020 Oct 16;11:586984 [PMID: 33178220]
  2. Nature. 2020 Aug;584(7821):457-462 [PMID: 32668444]
  3. Nano Lett. 2020 Sep 9;20(9):6289-6298 [PMID: 32594746]
  4. Int J Infect Dis. 2020 Sep;98:180-186 [PMID: 32562846]
  5. Nat Immunol. 2021 Jan;22(1):74-85 [PMID: 32999467]
  6. Res Sq. 2020 Aug 04;: [PMID: 32793896]
  7. Immunity. 2005 Jan;22(1):81-92 [PMID: 15664161]
  8. Nat Biotechnol. 2020 Oct;38(10):1194-1202 [PMID: 32341563]
  9. Cancer Immunol Res. 2018 Feb;6(2):151-162 [PMID: 29263161]
  10. Eur J Immunol. 1999 Aug;29(8):2385-91 [PMID: 10458750]
  11. Nat Rev Microbiol. 2021 Mar;19(3):141-154 [PMID: 33024307]
  12. JCI Insight. 2018 Oct 4;3(19): [PMID: 30282836]
  13. Nat Rev Immunol. 2020 Aug;20(8):457-458 [PMID: 32636479]
  14. J Biol Chem. 2012 Jan 6;287(2):1168-77 [PMID: 22102287]
  15. Immunity. 2020 Nov 17;53(5):1095-1107.e3 [PMID: 33128877]
  16. Cell Rep. 2021 Mar 16;34(11):108863 [PMID: 33691089]
  17. Blood. 2009 Nov 5;114(19):4099-107 [PMID: 19706884]
  18. J Clin Invest. 2005 Dec;115(12):3602-12 [PMID: 16308574]
  19. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  20. Vaccines (Basel). 2021 Apr 24;9(5): [PMID: 33923159]
  21. Nature. 2017 Jul 6;547(7661):94-98 [PMID: 28636589]
  22. Nat Commun. 2013;4:2680 [PMID: 24157944]
  23. JAMA Netw Open. 2021 Mar 1;4(3):e212816 [PMID: 33688968]
  24. J Transl Med. 2003 Aug 14;1(1):3 [PMID: 14527342]
  25. Nucleic Acids Res. 2020 Jan 8;48(D1):D1057-D1062 [PMID: 31588507]
  26. Expert Rev Vaccines. 2011 Mar;10(3):299-306 [PMID: 21434798]
  27. Science. 2020 Nov 27;370(6520): [PMID: 32994364]
  28. Science. 2020 Oct 2;370(6512):89-94 [PMID: 32753554]
  29. Immunol Rev. 2010 May;235(1):244-66 [PMID: 20536568]
  30. Prev Med. 2021 Feb;143:106351 [PMID: 33275965]
  31. J Med Virol. 2021 Jan;93(1):64-65 [PMID: 32497290]
  32. Bioinformatics. 2004 Aug 4;20 Suppl 1:i379-85 [PMID: 15262823]
  33. Clin Cancer Res. 2020 Mar 15;26(6):1359-1371 [PMID: 31831563]
  34. Nat Rev Immunol. 2012 Sep;12(9):669-77 [PMID: 22918468]
  35. Nat Cell Biol. 2021 May;23(5):538-551 [PMID: 33972731]
  36. Elife. 2021 Nov 30;10: [PMID: 34845983]
  37. Clin Vaccine Immunol. 2009 Jul;16(7):1066-73 [PMID: 19494085]
  38. Vaccines (Basel). 2020 Sep 16;8(3): [PMID: 32947988]
  39. J Immunother Cancer. 2021 Jul;9(7): [PMID: 34230111]
  40. Crit Rev Immunol. 2012;32(4):349-72 [PMID: 23237510]

Grants

  1. 75N92020D00005/NHLBI NIH HHS
  2. R01 CA108835/NCI NIH HHS
  3. S10 OD016315/NIH HHS
  4. 75N93022D00005/NIAID NIH HHS
  5. 75N99020D00005/ORFDO NIH HHS
  6. T32 HD044355/NICHD NIH HHS
  7. 75N95020D00005/NIDA NIH HHS
  8. P41 EB028239/NIBIB NIH HHS
  9. 75N93023D00005/NIAID NIH HHS
  10. F31 CA254121/NCI NIH HHS
  11. R01 EB029341/NIBIB NIH HHS
  12. P30 AI094189/NIAID NIH HHS
  13. R33 CA229042/NCI NIH HHS

MeSH Term

Antigens, Viral
CD8-Positive T-Lymphocytes
COVID-19
Cytokines
Epitopes
Humans
Influenza, Human
Receptors, Antigen, T-Cell
SARS-CoV-2

Chemicals

Antigens, Viral
Cytokines
Epitopes
Receptors, Antigen, T-Cell

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2TcellsimmunityCOVID-19influenzaIAVcellresponsevirusesresponsesTCRmayshowedexposureheterologousimmuneunrelatedassaydetectedepitopesM158-66specificitycross-reactiveCross-reactiverelatedcoronaviruseswell-documentedplayrolepreventingsevereEpidemiologicalstudiesearlypandemicgeographicalassociationhighvaccinationrateslowerincidenceinfectionthereforeanalyzedwhethervirusantigensinfluencerepertoireindicating2Usingartificialantigen-presentingaAPCscombinedreal-timereverse-transcriptionPCRRT-qPCRdevelopedsensitivequicklyscreenantigen-specificsignificantcorrelationdominantepitopeanalysisconvalescentdonorsexhibitedreceptorfunctionalcytokinemultipleUtilizingaAPC-basedstimulation/expansionadditionsequencingIAV-specificrevealedsimilaritiesrepertoirestwopopulationsresultsindicateshapedendemicaffectnovelCross-reactivitySARS-CoV-2-A-specificindividualsexposedAdaptiveImmunology

Similar Articles

Cited By