Network Physiology of Exercise: Beyond Molecular and Omics Perspectives.

Nat��lia Balagu��, Robert Hristovski, Maricarmen Almarcha, Sergi Garcia-Retortillo, Plamen Ch Ivanov
Author Information
  1. Nat��lia Balagu��: Complex Systems in Sport Research Group, Institut Nacional d'Educaci�� Fisica de Catalunya (INEFC), University of Barcelona (UB), Barcelona, Spain. nataliabalague@gmail.com. ORCID
  2. Robert Hristovski: Complex Systems in Sport Research Group, Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, 1000, Skopje, Republic of Macedonia. ORCID
  3. Maricarmen Almarcha: Complex Systems in Sport Research Group, Institut Nacional d'Educaci�� Fisica de Catalunya (INEFC), University of Barcelona (UB), Barcelona, Spain. ORCID
  4. Sergi Garcia-Retortillo: Complex Systems in Sport Research Group, Institut Nacional d'Educaci�� Fisica de Catalunya (INEFC), University of Barcelona (UB), Barcelona, Spain. ORCID
  5. Plamen Ch Ivanov: Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, 02215, USA. plamen@buphy.bu.edu. ORCID

Abstract

Molecular Exercise Physiology and Omics approaches represent an important step toward synthesis and integration, the original essence of Physiology. Despite the significant progress they have introduced in Exercise Physiology (EP), some of their theoretical and methodological assumptions are still limiting the understanding of the complexity of sport-related phenomena. Based on general principles of biological evolution and supported by complex network science, this paper aims to contrast theoretical and methodological aspects of molecular and network-based approaches to EP. After explaining the main EP challenges and why sport-related phenomena cannot be understood if reduced to the molecular level, the paper proposes some methodological research advances related to the type of studied variables and measures, the data acquisition techniques, the type of data analysis and the assumed relations among physiological levels. Inspired by Network Physiology, Network Physiology of Exercise provides a new paradigm and formalism to quantify cross-communication among diverse systems across levels and time scales to improve our understanding of exercise-related phenomena and opens new horizons for exercise testing in health and disease.

Keywords

References

  1. Front Physiol. 2020 Dec 11;11:611550 [PMID: 33362584]
  2. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13763-8 [PMID: 11698650]
  3. PLoS One. 2008 Jun 18;3(6):e2456 [PMID: 18560561]
  4. Front Physiol. 2016 Feb 15;7:37 [PMID: 26913006]
  5. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  6. Exp Brain Res. 2007 Mar;177(3):336-46 [PMID: 16972073]
  7. PLoS One. 2015 Nov 10;10(11):e0142143 [PMID: 26555073]
  8. Eur J Appl Physiol. 2010 Jul;109(4):763-70 [PMID: 20221773]
  9. Comput Cardiol (2010). 2014 Sep;41:781-784 [PMID: 25664348]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 1):062902 [PMID: 12513330]
  11. Exp Gerontol. 2018 Jul 1;107:126-129 [PMID: 28847723]
  12. Early Hum Dev. 2001 Sep;64(2):105-17 [PMID: 11440823]
  13. Nat Commun. 2012 Feb 28;3:702 [PMID: 22426223]
  14. Hum Brain Mapp. 2019 Jun 15;40(9):2581-2595 [PMID: 30779256]
  15. Cold Spring Harb Perspect Med. 2017 Oct 3;7(10): [PMID: 28348175]
  16. Front Netw Physiol. 2022 Jan 28;1:765332 [PMID: 36925567]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051908 [PMID: 12059594]
  18. Multivariate Behav Res. 2017 Mar-Apr;52(2):129-148 [PMID: 27925768]
  19. Front Neural Circuits. 2015 Oct 26;9:62 [PMID: 26578891]
  20. Sci Adv. 2018 Jun 27;4(6):eaat0497 [PMID: 29963631]
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041920 [PMID: 19518269]
  22. Europhys Lett. 1999 Dec 1;48(5):594-600 [PMID: 11542917]
  23. Front Physiol. 2019 Jul 18;10:827 [PMID: 31379589]
  24. Science. 1972 Aug 4;177(4047):393-6 [PMID: 17796623]
  25. J Sport Health Sci. 2019 Sep;8(5):422-441 [PMID: 31534817]
  26. Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17545-8 [PMID: 15583127]
  27. Biol Lett. 2011 Apr 23;7(2):163-5 [PMID: 21068027]
  28. J Int Soc Sports Nutr. 2012 Jun 26;9(1):30 [PMID: 22734448]
  29. Br J Sports Med. 2005 Feb;39(2):120-4 [PMID: 15665213]
  30. Commun Biol. 2020 Apr 27;3(1):197 [PMID: 32341420]
  31. Physica A. 2001 Dec 15;302(1-4):138-47 [PMID: 12033228]
  32. Physiol Rev. 2008 Oct;88(4):1379-406 [PMID: 18923185]
  33. Cell Metab. 2015 Jul 7;22(1):4-11 [PMID: 26073496]
  34. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031915 [PMID: 16605566]
  35. Eur J Sport Sci. 2017 Feb;17(1):51-62 [PMID: 27685425]
  36. Philos Trans A Math Phys Eng Sci. 2016 May 13;374(2067): [PMID: 27044991]
  37. Biol Cybern. 2021 Aug;115(4):305-322 [PMID: 34406513]
  38. Front Genet. 2014 Apr 08;5:83 [PMID: 24782892]
  39. Br J Sports Med. 2005 Jan;39(1):52-62 [PMID: 15618343]
  40. Front Psychol. 2020 Sep 11;11:2220 [PMID: 33041893]
  41. New J Phys. 2016 Oct;18: [PMID: 30881198]
  42. Hum Mov Sci. 2010 Aug;29(4):483-93 [PMID: 20619908]
  43. Europhys Lett. 2013 Apr 1;102(1):10008 [PMID: 24653582]
  44. Europhys Lett. 1998 Aug 15;43(4):363-8 [PMID: 11542723]
  45. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):065201 [PMID: 16906897]
  46. Physica A. 2004 Jun;337(1-2):307-18 [PMID: 15759365]
  47. Assessment. 2016 Aug;23(4):447-458 [PMID: 27165092]
  48. Chaos. 2001 Sep;11(3):641-652 [PMID: 12779503]
  49. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11694-9 [PMID: 17609372]
  50. Front Physiol. 2016 Feb 12;7:35 [PMID: 26903884]
  51. Cold Spring Harb Perspect Med. 2017 Nov 1;7(11): [PMID: 28389517]
  52. Sports Med Open. 2019 Feb 11;5(1):6 [PMID: 30742241]
  53. Dev Psychobiol. 2008 Jan;50(1):60-9 [PMID: 18085558]
  54. Front Physiol. 2019 Jul 26;10:924 [PMID: 31427981]
  55. BMC Bioinformatics. 2018 Oct 4;19(1):367 [PMID: 30286713]
  56. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4323-8 [PMID: 18326631]
  57. Entropy (Basel). 2020 Jul 01;22(7): [PMID: 33286504]
  58. Physiol Meas. 2019 Sep 03;40(8):084002 [PMID: 31239421]
  59. Med Sci Sports Exerc. 2016 Nov;48(11):2228-2238 [PMID: 27015386]
  60. Front Physiol. 2020 Jul 24;11:751 [PMID: 32792967]
  61. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061126 [PMID: 23367912]
  62. Br J Sports Med. 2018 Aug;52(15):957-966 [PMID: 28835409]
  63. Sports Med Open. 2020 Jul 13;6(1):28 [PMID: 32661759]
  64. Adv Exp Med Biol. 2009;629:83-91 [PMID: 19227496]
  65. Sleep. 2010 Jul;33(7):943-55 [PMID: 20614854]
  66. Physiol Meas. 2018 Aug 31;39(8):084007 [PMID: 30088478]
  67. Cogn Syst Res. 2010 Jun 1;11(2):148-164 [PMID: 20191086]
  68. Biomed Res Int. 2014;2014:934038 [PMID: 25013812]
  69. Izv Akad Nauk Ser Biol. 2012 Mar-Apr;(2):144-53 [PMID: 22679766]
  70. Physiol Meas. 2015 Apr;36(4):683-98 [PMID: 25799205]
  71. Cell Metab. 2015 Jul 7;22(1):25-30 [PMID: 26154051]
  72. J Appl Physiol (1985). 2020 Sep 1;129(3):419-441 [PMID: 32673157]

Word Cloud

Created with Highcharts 10.0.0PhysiologyNetworkExerciseintegrationEPmethodologicalphenomenaMolecularOmicsapproachestheoreticalunderstandingsport-relatedpapermoleculartypedataanalysisamonglevelsnewtimerepresentimportantsteptowardsynthesisoriginalessenceDespitesignificantprogressintroducedassumptionsstilllimitingcomplexityBasedgeneralprinciplesbiologicalevolutionsupportedcomplexnetworkscienceaimscontrastaspectsnetwork-basedexplainingmainchallengesunderstoodreducedlevelproposesresearchadvancesrelatedstudiedvariablesmeasuresacquisitiontechniquesassumedrelationsphysiologicalInspiredprovidesparadigmformalismquantifycross-communicationdiversesystemsacrossscalesimproveexercise-relatedopenshorizonsexercisetestinghealthdiseaseExercise:BeyondPerspectivesDynamiccouplingsExercise-relatedprocessesHorizontalIntra-individualco-variabilityMultivariateseriesPhysiologicalinteractionsVertical

Similar Articles

Cited By