Natural and Modified Oligonucleotide Sequences Show Distinct Strand Displacement Kinetics and These Are Affected Further by Molecular Crowders.

Ivana Domljanovic, Alessandro Ianiro, Curzio R��egg, Michael Mayer, Maria Taskova
Author Information
  1. Ivana Domljanovic: Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Mus��e 18, PER17, 1700 Fribourg, Switzerland. ORCID
  2. Alessandro Ianiro: BioPhysics, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, PER 18, 1700 Fribourg, Switzerland.
  3. Curzio R��egg: Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Mus��e 18, PER17, 1700 Fribourg, Switzerland. ORCID
  4. Michael Mayer: BioPhysics, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, PER 18, 1700 Fribourg, Switzerland. ORCID
  5. Maria Taskova: BioPhysics, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, PER 18, 1700 Fribourg, Switzerland. ORCID

Abstract

DNA and RNA strand exchange is a process of fundamental importance in biology. Herein, we used a FRET-based assay to investigate, for the first time, the stand exchange kinetics of natural DNA, natural RNA, and locked nucleic acid (LNA)-modified DNA sequences in vitro in PBS in the absence or presence of molecular additives and macromolecular crowders such as diethylene glycol dimethyl ether (deg), polyethylene glycol (peg), and polyvinylpyrrolidone (pvp). The results show that the kinetics of strand exchange mediated by DNA, RNA, and LNA-DNA oligonucleotide sequences are different. Different molecular crowders further affect the strand displacement kinetics, highlighting the complexity of the process of nucleic acid strand exchange as it occurs in vivo. In a peg-containing buffer, the rate constant of displacement was slightly increased for the DNA displacement strand, while it was slightly decreased for the RNA and the LNA-DNA strands compared with displacement in pure PBS. When we used a deg-containing buffer, the rate constants of displacement for all three sequences were drastically increased compared with displacement in PBS. Overall, we show that interactions of the additives with the duplex strands have a significant effect on the strand displacement kinetics and this effect can exceed the one exerted by the chemical nature of the displacement strand itself.

Keywords

References

  1. J Phys Chem A. 2013 Jan 10;117(1):42-55 [PMID: 23234566]
  2. Annu Rev Biochem. 2008;77:229-57 [PMID: 18275380]
  3. Materials (Basel). 2020 Jul 10;13(14): [PMID: 32664278]
  4. Biotechniques. 2001 Nov;31(5):1106-16, 1118, 1120-1 [PMID: 11730017]
  5. Mol Ther Nucleic Acids. 2020 Mar 6;19:1176-1185 [PMID: 32069700]
  6. Materials (Basel). 2020 May 09;13(9): [PMID: 32397498]
  7. Nat Chem. 2011 Feb;3(2):103-13 [PMID: 21258382]
  8. Biochemistry. 2004 Oct 26;43(42):13233-41 [PMID: 15491130]
  9. Trends Biotechnol. 2003 Feb;21(2):74-81 [PMID: 12573856]
  10. Nature. 2006 Mar 16;440(7082):297-302 [PMID: 16541064]
  11. Nucleic Acids Symp Ser (Oxf). 2008;(52):417-8 [PMID: 18776431]
  12. Nat Rev Drug Discov. 2020 Oct;19(10):673-694 [PMID: 32782413]
  13. Chem Commun (Camb). 2010 Nov 21;46(43):8231-3 [PMID: 20877908]
  14. Chem Commun (Camb). 2015 Apr 30;51(34):7390-2 [PMID: 25823973]
  15. Cell Res. 2008 Jan;18(1):99-113 [PMID: 18166982]
  16. Int J Mol Sci. 2018 Jul 20;19(7): [PMID: 30037005]
  17. Tissue Eng Part C Methods. 2014 Dec;20(12):994-1002 [PMID: 24665935]
  18. Chem Soc Rev. 2006 Nov;35(11):1111-21 [PMID: 17057840]
  19. Med Eng Phys. 2019 Sep;71:56-67 [PMID: 31257053]
  20. Nature. 2000 Aug 10;406(6796):605-8 [PMID: 10949296]
  21. Commun Chem. 2020 Aug 11;3(1):111 [PMID: 36703315]
  22. Biomed J. 2020 Feb;43(1):8-17 [PMID: 32200959]
  23. Biopolymers. 2021 Apr;112(4):e23426 [PMID: 33780001]
  24. Science. 2014 Aug 15;345(6198):799-804 [PMID: 25124436]
  25. Annu Rev Biochem. 2002;71:71-100 [PMID: 12045091]
  26. Bioconjug Chem. 2016 Mar 16;27(3):840-8 [PMID: 26895222]
  27. Nat Rev Cancer. 2017 Nov;17(11):676-691 [PMID: 28984291]
  28. J Struct Biol. 2019 Sep 1;207(3):241-249 [PMID: 31220588]

MeSH Term

DNA
Kinetics
Oligonucleotides
Polyethylene Glycols
Povidone
RNA

Chemicals

Oligonucleotides
Polyethylene Glycols
RNA
DNA
Povidone

Word Cloud

Created with Highcharts 10.0.0displacementstrandDNARNAexchangekineticsnucleicsequencesPBSprocessusednaturalacidmolecularadditivescrowdersglycolshowLNA-DNAbufferrateslightlyincreasedstrandscomparedeffectfundamentalimportancebiologyHereinFRET-basedassayinvestigatefirsttimestandlockedLNA-modifiedvitroabsencepresencemacromoleculardiethylenedimethyletherdegpolyethylenepegpolyvinylpyrrolidonepvpresultsmediatedoligonucleotidedifferentDifferentaffecthighlightingcomplexityoccursvivopeg-containingconstantdecreasedpuredeg-containingconstantsthreedrasticallyOverallinteractionsduplexsignificantcanexceedoneexertedchemicalnatureitselfNaturalModifiedOligonucleotideSequencesShowDistinctStrandDisplacementKineticsAffectedMolecularCrowdersFREThybridizationacids

Similar Articles

Cited By

No available data.