Synthesis, Molecular Docking, In Vitro and In Vivo Studies of Novel Dimorpholinoquinazoline-Based Potential Inhibitors of PI3K/Akt/mTOR Pathway.

Maria V Zapevalova, Ekaterina S Shchegravina, Irina P Fonareva, Diana I Salnikova, Danila V Sorokin, Alexander M Scherbakov, Alexander A Maleev, Stanislav K Ignatov, Ivan D Grishin, Alexander N Kuimov, Maryia V Konovalova, Elena V Svirshchevskaya, Alexey Yu Fedorov
Author Information
  1. Maria V Zapevalova: Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia.
  2. Ekaterina S Shchegravina: Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia. ORCID
  3. Irina P Fonareva: Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia.
  4. Diana I Salnikova: Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115522 Moscow, Russia. ORCID
  5. Danila V Sorokin: Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115522 Moscow, Russia.
  6. Alexander M Scherbakov: Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115522 Moscow, Russia. ORCID
  7. Alexander A Maleev: Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia.
  8. Stanislav K Ignatov: Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia.
  9. Ivan D Grishin: Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia.
  10. Alexander N Kuimov: A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
  11. Maryia V Konovalova: Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia. ORCID
  12. Elena V Svirshchevskaya: Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
  13. Alexey Yu Fedorov: Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia.

Abstract

A (series) range of potential dimorpholinoquinazoline-based inhibitors of the was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound inhibited the phosphorylation of Akt, mTOR, and S6K at 125-250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 50 µM and of 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for . In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib () by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform.

Keywords

References

  1. Ann Oncol. 2019 Dec 1;30(Suppl_10):x21-x26 [PMID: 31626273]
  2. Protein Sci. 2014 Oct;23(10):1332-40 [PMID: 25043846]
  3. Nat Chem Biol. 2019 Apr;15(4):348-357 [PMID: 30718815]
  4. J Med Chem. 2019 Jul 11;62(13):6241-6261 [PMID: 31244112]
  5. J Med Chem. 2020 Apr 23;63(8):4256-4292 [PMID: 32212730]
  6. Eur J Med Chem. 2021 Jan 1;209:112913 [PMID: 33109399]
  7. Nat Rev Drug Discov. 2014 Feb;13(2):140-56 [PMID: 24481312]
  8. Biol Pharm Bull. 1997 Jun;20(6):698-700 [PMID: 9212994]
  9. Nat Cancer. 2021 Jun;2(6):587-597 [PMID: 35118422]
  10. J Cell Sci. 2014 Mar 1;127(Pt 5):923-8 [PMID: 24587488]
  11. Nature. 2018 Aug;560(7719):499-503 [PMID: 30051890]
  12. Cancer Cell. 2011 Jun 14;19(6):715-27 [PMID: 21665146]
  13. Nature. 2013 May 9;497(7448):217-23 [PMID: 23636326]
  14. Nat Rev Cancer. 2015 Jan;15(1):7-24 [PMID: 25533673]
  15. Cardiovasc Toxicol. 2018 Dec;18(6):493-506 [PMID: 29968072]
  16. Cell Biosci. 2020 Mar 10;10:31 [PMID: 32175074]
  17. Eur J Med Chem. 2020 Dec 15;208:112865 [PMID: 32987316]
  18. Cancer Treat Rev. 2014 Apr;40(3):445-56 [PMID: 24055012]
  19. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  20. J Med Chem. 2012 Jan 26;55(2):623-38 [PMID: 22148468]
  21. Mol Cancer. 2019 Feb 19;18(1):26 [PMID: 30782187]
  22. Bioorg Med Chem. 2021 Jan 1;29:115890 [PMID: 33285407]
  23. Eur J Med Chem. 2020 Oct 15;204:112637 [PMID: 32717477]
  24. Cell. 2013 Feb 14;152(4):778-790 [PMID: 23394946]
  25. Mol Biol Rep. 2020 Jun;47(6):4587-4629 [PMID: 32333246]
  26. ACS Med Chem Lett. 2019 Sep 03;10(10):1473-1479 [PMID: 31620236]
  27. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  28. Eur J Med Chem. 2019 May 15;170:55-72 [PMID: 30878832]
  29. Clin Dev Immunol. 2011;2011:947858 [PMID: 22046194]
  30. Biomolecules. 2019 Feb 26;9(3): [PMID: 30813656]
  31. Biochem J. 2012 Jun 15;444(3):529-35 [PMID: 22502592]
  32. Am J Physiol Cell Physiol. 2019 Aug 1;317(2):C244-C252 [PMID: 31116586]
  33. J Med Chem. 2019 May 23;62(10):4815-4850 [PMID: 30582807]
  34. Mol Pharmacol. 2011 Oct;80(4):657-64 [PMID: 21778304]
  35. J Med Chem. 2021 Jun 10;64(11):7331-7340 [PMID: 33876637]
  36. Semin Cancer Biol. 2019 Dec;59:80-91 [PMID: 31173856]
  37. Biochem J. 2008 Sep 15;414(3):383-90 [PMID: 18489260]
  38. Bioorg Med Chem. 2021 Feb 15;32:115997 [PMID: 33440319]
  39. J Med Chem. 2020 Oct 8;63(19):11121-11130 [PMID: 32897703]
  40. Cancer Cell. 2010 Jul 13;18(1):39-51 [PMID: 20609351]
  41. Commun Biol. 2021 Mar 23;4(1):389 [PMID: 33758369]
  42. Spermatogenesis. 2011 Apr;1(2):121-122 [PMID: 22319660]
  43. Cell. 2017 Aug 10;170(4):605-635 [PMID: 28802037]
  44. Nature. 1999 Nov 18;402(6759):313-20 [PMID: 10580505]
  45. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43 [PMID: 16176982]
  46. J Med Chem. 2010 Mar 25;53(6):2636-45 [PMID: 20166697]
  47. Cancer Res. 2021 Dec 15;81(24):6233-6245 [PMID: 34711611]
  48. Cancer Res. 2008 Aug 1;68(15):6084-91 [PMID: 18676830]
  49. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  50. Nat Chem Biol. 2014 Jun;10(6):463-9 [PMID: 24776928]
  51. Biomed Pharmacother. 2018 Jul;103:699-707 [PMID: 29680738]
  52. Bioorg Chem. 2021 Dec;117:105405 [PMID: 34649154]
  53. Nat Rev Clin Oncol. 2018 May;15(5):273-291 [PMID: 29508857]
  54. Lancet Oncol. 2017 Jul;18(7):904-916 [PMID: 28576675]
  55. J Med Chem. 2019 Aug 8;62(15):6992-7014 [PMID: 31117517]
  56. Lancet Oncol. 2021 May;22(5):678-689 [PMID: 33848462]
  57. Pharmaceuticals (Basel). 2020 Aug 21;13(9): [PMID: 32825760]
  58. Trends Cell Biol. 2019 Apr;29(4):339-359 [PMID: 30691999]
  59. Elife. 2021 Mar 04;10: [PMID: 33661099]
  60. Arzneimittelforschung. 1989 Jul;39(7):747-9 [PMID: 2783179]
  61. Ann Med. 2014 Sep;46(6):372-83 [PMID: 24897931]
  62. J Cell Sci. 2011 Jun 15;124(Pt 12):2021-31 [PMID: 21610095]
  63. J Clin Invest. 2015 Jan;125(1):25-32 [PMID: 25654547]
  64. Biomed Pharmacother. 2017 May;89:1252-1261 [PMID: 28320092]
  65. Am J Cancer Res. 2014 Dec 15;5(1):1-19 [PMID: 25628917]
  66. Nat Rev Clin Oncol. 2021 Sep;18(9):558-576 [PMID: 34006998]
  67. Expert Opin Ther Pat. 2021 Oct;31(10):877-892 [PMID: 33970742]
  68. Cell Oncol (Dordr). 2020 Aug;43(4):669-680 [PMID: 32382996]
  69. Oncogene. 2014 Jun 12;33(24):3083-90 [PMID: 23893246]
  70. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12793-8 [PMID: 25139988]
  71. Bioengineered. 2022 Mar;13(3):6794-6806 [PMID: 35246010]
  72. Front Oncol. 2022 Mar 24;12:819128 [PMID: 35402264]
  73. J Med Chem. 2018 Jun 28;61(12):5435-5441 [PMID: 29852070]
  74. PLoS Comput Biol. 2008 Feb 29;4(2):e1000013 [PMID: 18463697]
  75. Biosci Rep. 2018 Nov 30;38(6): [PMID: 30393233]
  76. Molecules. 2020 Oct 12;25(20): [PMID: 33053730]
  77. Int J Mol Sci. 2019 Nov 18;20(22): [PMID: 31752127]
  78. Oncogene. 2008 Oct 27;27(50):6473-88 [PMID: 18955974]
  79. Biomed Pharmacother. 2020 Feb;122:109726 [PMID: 31918283]

Grants

  1. 13.1902.21.0004/Ministry of Science and Higher Education of the Russian Federation

MeSH Term

Cell Line, Tumor
Cell Proliferation
Molecular Docking Simulation
Phosphatidylinositol 3-Kinases
Protein Kinase Inhibitors
Proto-Oncogene Proteins c-akt
Quinazolines
Reactive Oxygen Species
TOR Serine-Threonine Kinases
Triazines
Urea

Chemicals

Protein Kinase Inhibitors
Quinazolines
Reactive Oxygen Species
Triazines
Urea
Proto-Oncogene Proteins c-akt
TOR Serine-Threonine Kinases

Word Cloud

Created with Highcharts 10.0.0PI3KαinhibitionrangetowardscancercellCompoundactivityalsoS6KviaµMcanstudiestumorPI3K/Akt/mTORseriespotentialdimorpholinoquinazoline-basedinhibitorssynthesizedSeveralcompoundsexhibitedcytotoxicitypanellineslowsub-micromolarhighestmoderateselectivityMCF7cellsexpressmutanttypePI3KtestedabilityinhibitPI3K-signalingpathwaydownstreameffectorsassociatedproteinsinhibitedphosphorylationAktmTOR125-250nMtriggeredPARP1cleavageROSproductiondeathseveralmechanismsInhibitionobservedconcentration50500higherindicateminoritytargetamongkinasestitledcascadevivodemonstratedgrowthcolorectalmodelAccordingdockingreplacementtriazinecoregedatolisibquinazolinefragmentincorporationheteroaromaticunitconnectedcarbamidegroupflexiblespacerresultselectiveisoformSynthesisMolecularDockingVitroVivoStudiesNovelDimorpholinoquinazoline-BasedPotentialInhibitorsPathwayinhibitordimorpholinoquinazolinekinase

Similar Articles

Cited By