Artificial Intelligence-Based Medical Data Mining.
Amjad Zia, Muzzamil Aziz, Ioana Popa, Sabih Ahmed Khan, Amirreza Fazely Hamedani, Abdul R Asif
Author Information
Amjad Zia: Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany. ORCID
Muzzamil Aziz: Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany.
Ioana Popa: Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany.
Sabih Ahmed Khan: Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany.
Amirreza Fazely Hamedani: Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany.
Abdul R Asif: Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany.
中文译文
English
Understanding published unstructured textual data using traditional text mining approaches and tools is becoming a challenging issue due to the rapid increase in electronic open-source publications. The application of data mining techniques in the medical sciences is an emerging trend; however, traditional text-mining approaches are insufficient to cope with the current upsurge in the volume of published data. Therefore, artificial intelligence-based text mining tools are being developed and used to process large volumes of data and to explore the hidden features and correlations in the data. This review provides a clear-cut and insightful understanding of how artificial intelligence-based data-mining technology is being used to analyze medical data. We also describe a standard process of data mining based on CRISP-DM (Cross-Industry Standard Process for Data Mining) and the most common tools/libraries available for each step of medical data mining.
Int J Med Inform. 2017 Feb;98:22-32
[PMID: 28034409 ]
PLoS One. 2020 Jan 24;15(1):e0228154
[PMID: 31978151 ]
Nature. 2020 Sep;585(7826):621-622
[PMID: 32901148 ]
BMC Med. 2020 Aug 6;18(1):250
[PMID: 32762696 ]
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2271-80
[PMID: 26356941 ]
Lancet. 2007 Jun 16;369(9578):1980-1982
[PMID: 17574079 ]
Lancet. 2020 Oct 17;396(10258):1204-1222
[PMID: 33069326 ]
JAMA Surg. 2018 Jun 1;153(6):588-589
[PMID: 29617544 ]
Biopreserv Biobank. 2015 Aug;13(4):271-9
[PMID: 26186276 ]
Adv Nutr. 2016 Jan 15;7(1):121-34
[PMID: 26773020 ]
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1753-62
[PMID: 26356889 ]
Public Health Rep. 2015 Mar-Apr;130(2):171-5
[PMID: 25729109 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):200-9
[PMID: 26529700 ]
Biomed Eng Online. 2022 Aug 1;21(1):52
[PMID: 35915448 ]
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1823-32
[PMID: 26356896 ]
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):141-150
[PMID: 27514051 ]
BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):67
[PMID: 28699566 ]
Stud Health Technol Inform. 2017;245:1260
[PMID: 29295345 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):429-38
[PMID: 26529713 ]
Proteomics. 2020 Nov;20(21-22):e1900344
[PMID: 32643271 ]
JMIR Med Inform. 2019 Dec 9;7(4):e13430
[PMID: 31815673 ]
J Integr Bioinform. 2018 May 10;15(3):
[PMID: 29746254 ]
Nature. 2020 Sep;585(7825):357-362
[PMID: 32939066 ]
IEEE Trans Vis Comput Graph. 2017 Sep;23(9):2199-2206
[PMID: 28113510 ]
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):691-700
[PMID: 27875184 ]
J Biomed Inform. 2014 Dec;52:11-27
[PMID: 24262893 ]
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):161-170
[PMID: 27875139 ]
IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2002-11
[PMID: 24051766 ]
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):621-630
[PMID: 27875177 ]
IEEE Trans Vis Comput Graph. 2018 Jan;24(1):371-381
[PMID: 28866570 ]
IEEE Trans Vis Comput Graph. 2015 May;21(5):672-85
[PMID: 26357213 ]
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1773-82
[PMID: 26356891 ]
IEEE Trans Vis Comput Graph. 2012 Sep;18(9):1424-37
[PMID: 22184261 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):439-48
[PMID: 26529714 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):71-80
[PMID: 26529688 ]
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1763-72
[PMID: 26356890 ]
IEEE Trans Vis Comput Graph. 2012 Jun;18(6):988-97
[PMID: 22499664 ]
Brief Bioinform. 2021 Mar 22;22(2):1592-1603
[PMID: 33569575 ]
Annu Rev Genomics Hum Genet. 2010;11:361-81
[PMID: 20477535 ]
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):151-160
[PMID: 27875138 ]
IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2649-58
[PMID: 26357174 ]
Mil Med Res. 2021 Aug 11;8(1):44
[PMID: 34380547 ]
IEEE Trans Vis Comput Graph. 2016 Dec;22(12):2508-2521
[PMID: 26761818 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):180-9
[PMID: 26529698 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):190-9
[PMID: 26529699 ]
Bioinformatics. 2007 Jul 15;23(14):1846-7
[PMID: 17496320 ]
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):201-210
[PMID: 27514047 ]
Sci Data. 2019 Dec 12;6(1):317
[PMID: 31831740 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):300-9
[PMID: 26529709 ]
Nucleic Acids Res. 2013 Jan;41(Database issue):D8-D20
[PMID: 23193264 ]
Nat Genet. 2013 Oct;45(10):1113-20
[PMID: 24071849 ]
Sci Data. 2016 May 24;3:160035
[PMID: 27219127 ]
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):210-9
[PMID: 26529701 ]
J Med Internet Res. 2020 Jul 24;22(7):e17853
[PMID: 32706701 ]
IEEE Trans Vis Comput Graph. 2016 Jul;22(7):1816-29
[PMID: 26841398 ]
Artif Intell Med. 2002 Sep-Oct;26(1-2):1-24
[PMID: 12234714 ]
BMJ. 2015 Sep 25;351:h4169
[PMID: 26407814 ]
J Med Syst. 2021 Jan 5;45(1):6
[PMID: 33404894 ]
BMJ Open. 2022 May 9;12(5):e054186
[PMID: 35534084 ]
Bioinformatics. 2019 Sep 15;35(18):3533-3535
[PMID: 30715220 ]
16KIS1292/Federal Ministry of Education and Research