Artificial Intelligence-Based Medical Data Mining.

Amjad Zia, Muzzamil Aziz, Ioana Popa, Sabih Ahmed Khan, Amirreza Fazely Hamedani, Abdul R Asif
Author Information
  1. Amjad Zia: Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany. ORCID
  2. Muzzamil Aziz: Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany.
  3. Ioana Popa: Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany.
  4. Sabih Ahmed Khan: Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany.
  5. Amirreza Fazely Hamedani: Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany.
  6. Abdul R Asif: Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany.

Abstract

Understanding published unstructured textual data using traditional text mining approaches and tools is becoming a challenging issue due to the rapid increase in electronic open-source publications. The application of data mining techniques in the medical sciences is an emerging trend; however, traditional text-mining approaches are insufficient to cope with the current upsurge in the volume of published data. Therefore, artificial intelligence-based text mining tools are being developed and used to process large volumes of data and to explore the hidden features and correlations in the data. This review provides a clear-cut and insightful understanding of how artificial intelligence-based data-mining technology is being used to analyze medical data. We also describe a standard process of data mining based on CRISP-DM (Cross-Industry Standard Process for Data Mining) and the most common tools/libraries available for each step of medical data mining.

Keywords

References

  1. Int J Med Inform. 2017 Feb;98:22-32 [PMID: 28034409]
  2. PLoS One. 2020 Jan 24;15(1):e0228154 [PMID: 31978151]
  3. Nature. 2020 Sep;585(7826):621-622 [PMID: 32901148]
  4. BMC Med. 2020 Aug 6;18(1):250 [PMID: 32762696]
  5. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2271-80 [PMID: 26356941]
  6. Lancet. 2007 Jun 16;369(9578):1980-1982 [PMID: 17574079]
  7. Lancet. 2020 Oct 17;396(10258):1204-1222 [PMID: 33069326]
  8. JAMA Surg. 2018 Jun 1;153(6):588-589 [PMID: 29617544]
  9. Biopreserv Biobank. 2015 Aug;13(4):271-9 [PMID: 26186276]
  10. Adv Nutr. 2016 Jan 15;7(1):121-34 [PMID: 26773020]
  11. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1753-62 [PMID: 26356889]
  12. Public Health Rep. 2015 Mar-Apr;130(2):171-5 [PMID: 25729109]
  13. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):200-9 [PMID: 26529700]
  14. Biomed Eng Online. 2022 Aug 1;21(1):52 [PMID: 35915448]
  15. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1823-32 [PMID: 26356896]
  16. IEEE Trans Vis Comput Graph. 2017 Jan;23(1):141-150 [PMID: 27514051]
  17. BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):67 [PMID: 28699566]
  18. Stud Health Technol Inform. 2017;245:1260 [PMID: 29295345]
  19. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):429-38 [PMID: 26529713]
  20. Proteomics. 2020 Nov;20(21-22):e1900344 [PMID: 32643271]
  21. JMIR Med Inform. 2019 Dec 9;7(4):e13430 [PMID: 31815673]
  22. J Integr Bioinform. 2018 May 10;15(3): [PMID: 29746254]
  23. Nature. 2020 Sep;585(7825):357-362 [PMID: 32939066]
  24. IEEE Trans Vis Comput Graph. 2017 Sep;23(9):2199-2206 [PMID: 28113510]
  25. IEEE Trans Vis Comput Graph. 2017 Jan;23(1):691-700 [PMID: 27875184]
  26. J Biomed Inform. 2014 Dec;52:11-27 [PMID: 24262893]
  27. IEEE Trans Vis Comput Graph. 2017 Jan;23(1):161-170 [PMID: 27875139]
  28. IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2002-11 [PMID: 24051766]
  29. IEEE Trans Vis Comput Graph. 2017 Jan;23(1):621-630 [PMID: 27875177]
  30. IEEE Trans Vis Comput Graph. 2018 Jan;24(1):371-381 [PMID: 28866570]
  31. IEEE Trans Vis Comput Graph. 2015 May;21(5):672-85 [PMID: 26357213]
  32. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1773-82 [PMID: 26356891]
  33. IEEE Trans Vis Comput Graph. 2012 Sep;18(9):1424-37 [PMID: 22184261]
  34. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):439-48 [PMID: 26529714]
  35. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):71-80 [PMID: 26529688]
  36. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1763-72 [PMID: 26356890]
  37. IEEE Trans Vis Comput Graph. 2012 Jun;18(6):988-97 [PMID: 22499664]
  38. Brief Bioinform. 2021 Mar 22;22(2):1592-1603 [PMID: 33569575]
  39. Annu Rev Genomics Hum Genet. 2010;11:361-81 [PMID: 20477535]
  40. IEEE Trans Vis Comput Graph. 2017 Jan;23(1):151-160 [PMID: 27875138]
  41. IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2649-58 [PMID: 26357174]
  42. Mil Med Res. 2021 Aug 11;8(1):44 [PMID: 34380547]
  43. IEEE Trans Vis Comput Graph. 2016 Dec;22(12):2508-2521 [PMID: 26761818]
  44. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):180-9 [PMID: 26529698]
  45. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):190-9 [PMID: 26529699]
  46. Bioinformatics. 2007 Jul 15;23(14):1846-7 [PMID: 17496320]
  47. IEEE Trans Vis Comput Graph. 2017 Jan;23(1):201-210 [PMID: 27514047]
  48. Sci Data. 2019 Dec 12;6(1):317 [PMID: 31831740]
  49. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):300-9 [PMID: 26529709]
  50. Nucleic Acids Res. 2013 Jan;41(Database issue):D8-D20 [PMID: 23193264]
  51. Nat Genet. 2013 Oct;45(10):1113-20 [PMID: 24071849]
  52. Sci Data. 2016 May 24;3:160035 [PMID: 27219127]
  53. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):210-9 [PMID: 26529701]
  54. J Med Internet Res. 2020 Jul 24;22(7):e17853 [PMID: 32706701]
  55. IEEE Trans Vis Comput Graph. 2016 Jul;22(7):1816-29 [PMID: 26841398]
  56. Artif Intell Med. 2002 Sep-Oct;26(1-2):1-24 [PMID: 12234714]
  57. BMJ. 2015 Sep 25;351:h4169 [PMID: 26407814]
  58. J Med Syst. 2021 Jan 5;45(1):6 [PMID: 33404894]
  59. BMJ Open. 2022 May 9;12(5):e054186 [PMID: 35534084]
  60. Bioinformatics. 2019 Sep 15;35(18):3533-3535 [PMID: 30715220]

Grants

  1. 16KIS1292/Federal Ministry of Education and Research

Word Cloud

Created with Highcharts 10.0.0dataminingmedicaltextartificialpublishedtraditionalapproachestoolsintelligence-basedusedprocessDataMiningUnderstandingunstructuredtextualusingbecomingchallengingissueduerapidincreaseelectronicopen-sourcepublicationsapplicationtechniquessciencesemergingtrendhowevertext-mininginsufficientcopecurrentupsurgevolumeThereforedevelopedlargevolumesexplorehiddenfeaturescorrelationsreviewprovidesclear-cutinsightfulunderstandingdata-miningtechnologyanalyzealsodescribestandardbasedCRISP-DMCross-IndustryStandardProcesscommontools/librariesavailablestepArtificialIntelligence-BasedMedicalintelligencehealthcareinformationmachinelearning

Similar Articles

Cited By