Genomic Approaches to Uncovering the Coevolutionary History of Parasitic Lice.

Kevin P Johnson
Author Information
  1. Kevin P Johnson: Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA. ORCID

Abstract

Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.

Keywords

References

  1. Evolution. 2018 Jan;72(1):95-112 [PMID: 29094340]
  2. Syst Biol. 2007 Apr;56(2):232-51 [PMID: 17464880]
  3. BMC Biol. 2012 Jun 20;10:52 [PMID: 22717002]
  4. Biol Lett. 2011 Oct 23;7(5):782-5 [PMID: 21471047]
  5. Nat Ecol Evol. 2022 Aug;6(8):1205-1210 [PMID: 35788706]
  6. Int J Parasitol. 2018 Jul;48(8):641-648 [PMID: 29577890]
  7. Proc Biol Sci. 2014 Jan 08;281(1777):20132174 [PMID: 24403325]
  8. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15694-9 [PMID: 14673114]
  9. Genome Biol Evol. 2017 Nov 1;9(11):2946-2957 [PMID: 29069349]
  10. Int J Parasitol. 1999 Jun;29(6):869-75 [PMID: 10480724]
  11. Commun Biol. 2019 Nov 29;2:445 [PMID: 31815200]
  12. BMC Bioinformatics. 2015 Mar 25;16:98 [PMID: 25887972]
  13. PeerJ. 2020 Mar 23;8:e8759 [PMID: 32231878]
  14. BMC Ecol Evol. 2021 Jun 2;21(1):108 [PMID: 34078265]
  15. Parasitol Res. 2013 Sep;112(9):3315-23 [PMID: 23828192]
  16. Syst Biol. 2003 Feb;52(1):37-47 [PMID: 12554438]
  17. Syst Biol. 2017 Sep 01;66(5):786-798 [PMID: 28123117]
  18. Proc Biol Sci. 2004 Sep 7;271(1550):1771-6 [PMID: 15315891]
  19. Mol Phylogenet Evol. 2021 Feb;155:106998 [PMID: 33130299]
  20. Biol Lett. 2014 Aug;10(8): [PMID: 25099959]
  21. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12775-12780 [PMID: 30478043]
  22. Curr Opin Insect Sci. 2019 Dec;36:111-117 [PMID: 31546095]
  23. BMC Evol Biol. 2013 May 31;13:109 [PMID: 23725492]
  24. Commun Biol. 2020 Oct 23;3(1):610 [PMID: 33097824]
  25. Genes (Basel). 2022 Mar 16;13(3): [PMID: 35328076]
  26. Proc Biol Sci. 2022 Mar 9;289(1970):20220042 [PMID: 35259992]
  27. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73 [PMID: 20566863]
  28. Gene. 2021 Feb 5;768:145312 [PMID: 33220346]
  29. Parasit Vectors. 2020 Oct 6;13(1):506 [PMID: 33023651]
  30. Hum Genomics. 2015 Aug 19;9:20 [PMID: 26286629]
  31. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  32. Proc Biol Sci. 2020 Feb 26;287(1921):20193005 [PMID: 32070251]
  33. Mol Ecol. 2020 Dec;29(23):4653-4664 [PMID: 32985035]
  34. Syst Biol. 2021 Jun 16;70(4):719-738 [PMID: 32979270]
  35. Mol Ecol. 2018 Jun;27(12):2770-2779 [PMID: 29752753]
  36. G3 (Bethesda). 2021 Feb 9;11(2): [PMID: 33604673]
  37. Appl Environ Microbiol. 2006 Nov;72(11):7349-52 [PMID: 16950915]
  38. J Med Entomol. 1990 Nov;27(6):1002-7 [PMID: 2280382]
  39. Science. 1994 Aug 19;265(5175):1087-90 [PMID: 8066445]
  40. Mol Biol Evol. 2001 May;18(5):858-65 [PMID: 11319269]
  41. Mol Phylogenet Evol. 2010 Jun;55(3):939-51 [PMID: 20211746]
  42. J Parasitol. 2020 Feb;106(1):14-24 [PMID: 31958374]
  43. Mol Phylogenet Evol. 2021 Dec;165:107297 [PMID: 34438049]
  44. Cell. 2006 Aug 11;126(3):453-65 [PMID: 16901780]
  45. Genome Res. 2009 May;19(5):904-12 [PMID: 19336451]
  46. Front Cell Infect Microbiol. 2020 Jan 21;9:474 [PMID: 32039050]
  47. Appl Environ Microbiol. 2016 May 16;82(11):3185-97 [PMID: 26994086]
  48. BMC Genomics. 2011 Aug 04;12:394 [PMID: 21813020]
  49. Mol Ecol. 2018 Dec;27(24):5104-5119 [PMID: 30427088]
  50. Insect Mol Biol. 2006 Feb;15(1):63-8 [PMID: 16469069]
  51. Sci Rep. 2015 Nov 30;5:17389 [PMID: 26617060]
  52. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9525-9 [PMID: 21606369]
  53. Mol Biol Evol. 2017 Jul 1;34(7):1743-1757 [PMID: 28419279]
  54. PeerJ. 2021 Mar 31;9:e11019 [PMID: 33850647]
  55. Parasit Vectors. 2021 May 20;14(1):269 [PMID: 34016171]
  56. Heredity (Edinb). 2005 Jul;95(1):34-40 [PMID: 15931254]
  57. Mol Phylogenet Evol. 2013 Jan;66(1):417-22 [PMID: 23000819]
  58. Mol Phylogenet Evol. 1998 Apr;9(2):276-93 [PMID: 9562986]
  59. Am Nat. 1999 Sep;154(3):261-270 [PMID: 10506542]
  60. Evol Bioinform Online. 2018 May 08;14:1176934318774546 [PMID: 29881251]
  61. Ecol Evol. 2020 Jul 18;10(15):8379-8393 [PMID: 32788987]
  62. Front Microbiol. 2021 Apr 16;12:642543 [PMID: 33935998]
  63. Syst Biol. 2019 May 1;68(3):430-440 [PMID: 30239978]
  64. J Mol Evol. 2007 Nov;65(5):589-604 [PMID: 17925995]
  65. Proc Biol Sci. 2004 Aug 7;271 Suppl 5:S255-8 [PMID: 15503987]
  66. Biol Lett. 2018 May;14(5): [PMID: 29794007]
  67. Parasitology. 2019 Jul;146(8):1083-1095 [PMID: 31046855]
  68. PLoS Pathog. 2013;9(11):e1003724 [PMID: 24244157]
  69. Mol Ecol. 2022 Sep;31(18):4593-4606 [PMID: 35726520]
  70. Commun Biol. 2022 Jul 8;5(1):677 [PMID: 35804150]
  71. J Evol Biol. 2006 Jan;19(1):156-66 [PMID: 16405587]
  72. Syst Biol. 2008 Jun;57(3):449-65 [PMID: 18570038]
  73. Mol Biol Evol. 2018 Mar 1;35(3):543-548 [PMID: 29220515]
  74. Mol Ecol. 2021 May;30(9):2178-2196 [PMID: 33639022]
  75. PLoS One. 2021 Jul 27;16(7):e0254138 [PMID: 34314423]

Grants

  1. DEB-1925487/National Science Foundation
  2. DEB-1926919/National Science Foundation

Word Cloud

Created with Highcharts 10.0.0populationlicegenomelousestudydatasetssequencinggenomicsnewapproachesappliedmajorPhthirapteragenomesusedamongspeciesalsomitochondrialNext-generationtechnologiesrevolutionizingfieldsphylogeneticsgeneticsgenomicextensivelygroupparasitesInsecta:birdsmammalsTwoassembledannotateddateopenedresourcesbiologyWholeassemblelargephylogenomicincorporatingsequencesthousandsgenesprovidedhighlysupportedtreestaxonomiclevelsrangingrelationshipsgroupscloselyrelatedscalerevealingpatternssubdivisioninbreedingFinallywholesequencecanadditionalbeyondnuclearfragmentationendosymbiontfunctionGenomicApproachesUncoveringCoevolutionaryHistoryParasiticLicecrypticendosymbiontsphylogenomics

Similar Articles

Cited By (1)