Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids.

Ankit Kumar Singh, Adarsh Kumar, Harshwardhan Singh, Pankaj Sonawane, Harshali Paliwal, Suresh Thareja, Prateek Pathak, Maria Grishina, Mariusz Jaremko, Abdul-Hamid Emwas, Jagat Pal Yadav, Amita Verma, Habibullah Khalilullah, Pradeep Kumar
Author Information
  1. Ankit Kumar Singh: Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 154001, India. ORCID
  2. Adarsh Kumar: Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 154001, India. ORCID
  3. Harshwardhan Singh: Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 154001, India.
  4. Pankaj Sonawane: Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 154001, India. ORCID
  5. Harshali Paliwal: Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 154001, India.
  6. Suresh Thareja: Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 154001, India.
  7. Prateek Pathak: Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia. ORCID
  8. Maria Grishina: Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia. ORCID
  9. Mariusz Jaremko: Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
  10. Abdul-Hamid Emwas: Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. ORCID
  11. Jagat Pal Yadav: Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India. ORCID
  12. Amita Verma: Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India. ORCID
  13. Habibullah Khalilullah: Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia. ORCID
  14. Pradeep Kumar: Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 154001, India. ORCID

Abstract

Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011-2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer.

Keywords

References

  1. Cancer Res Treat. 2018 Oct;50(4):1252-1259 [PMID: 29334610]
  2. Indian J Dermatol. 2015 Jul-Aug;60(4):419 [PMID: 26288427]
  3. Dalton Trans. 2021 Jan 7;50(1):362-375 [PMID: 33319888]
  4. Bioorg Med Chem Lett. 2013 Jun 15;23(12):3667-72 [PMID: 23642480]
  5. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11365-70 [PMID: 25049379]
  6. J Enzyme Inhib Med Chem. 2012 Oct;27(5):619-27 [PMID: 21899492]
  7. Expert Opin Drug Discov. 2021 Apr;16(4):335-363 [PMID: 33305635]
  8. Molecules. 2020 Mar 10;25(5): [PMID: 32164166]
  9. Curr Top Med Chem. 2017 Nov 20;17(28):3084-3098 [PMID: 28685693]
  10. RSC Adv. 2019 Mar 28;9(17):9809-9819 [PMID: 35520746]
  11. ACS Med Chem Lett. 2014 May 28;5(7):797-802 [PMID: 25050168]
  12. Bioorg Med Chem Lett. 2015 Feb 1;25(3):654-8 [PMID: 25563891]
  13. Pharmaceuticals (Basel). 2022 Feb 22;15(3): [PMID: 35337070]
  14. Biomolecules. 2021 Nov 04;11(11): [PMID: 34827636]
  15. Steroids. 2017 Jul;123:73-83 [PMID: 28450070]
  16. Free Radic Biol Med. 1989;6(1):63-101 [PMID: 2492250]
  17. Eur J Med Chem. 2019 Jan 1;161:101-117 [PMID: 30343191]
  18. Cancer Biol Ther. 2005 Nov;4(11):1275-84 [PMID: 16319524]
  19. Bioorg Med Chem Lett. 2012 Oct 1;22(19):6103-7 [PMID: 22944121]
  20. Cancer Cell Int. 2019 Aug 2;19:207 [PMID: 31388334]
  21. Eur J Med Chem. 2011 Aug;46(8):3462-8 [PMID: 21632155]
  22. Eur J Med Chem. 2013 Nov;69:125-38 [PMID: 24013412]
  23. ACS Omega. 2020 Apr 24;5(17):10089-10098 [PMID: 32391496]
  24. Blood Adv. 2018 Feb 27;2(4):444-453 [PMID: 29487059]
  25. Free Radic Biol Med. 2018 Nov 1;127:80-97 [PMID: 29746900]
  26. Eur J Med Chem. 2016 May 23;114:293-307 [PMID: 27015609]
  27. Bioorg Med Chem. 2017 Feb 1;25(3):1066-1075 [PMID: 28038941]
  28. Molecules. 2018 Sep 06;23(9): [PMID: 30200625]
  29. Drug Des Devel Ther. 2017 Aug 09;11:2333-2346 [PMID: 28848327]
  30. Eur J Med Chem. 2015 Nov 13;105:208-19 [PMID: 26496013]
  31. Bioorg Chem. 2019 Aug;89:103021 [PMID: 31176854]
  32. Nat Commun. 2015 Jan 06;6:5906 [PMID: 25562820]
  33. Bioorg Med Chem. 2015 Nov 15;23(22):7165-80 [PMID: 26515041]
  34. Toxicol In Vitro. 2009 Sep;23(6):979-85 [PMID: 19573588]
  35. BMC Syst Biol. 2017 Oct 3;11(Suppl 5):87 [PMID: 28984210]
  36. Recent Pat Anticancer Drug Discov. 2015;10(1):23-71 [PMID: 25230072]
  37. Eur J Med Chem. 2014 Oct 6;85:468-79 [PMID: 25113875]
  38. Eur J Med Chem. 2016 Oct 21;122:731-743 [PMID: 27479483]
  39. Eur J Med Chem. 2021 Oct 5;221:113531 [PMID: 34044345]
  40. Ecancermedicalscience. 2012 Nov 14;6:ed16 [PMID: 24883085]
  41. Eur J Med Chem. 2019 May 15;170:55-72 [PMID: 30878832]
  42. Chem Soc Rev. 2015 Dec 21;44(24):8836-47 [PMID: 26595684]
  43. J Enzyme Inhib Med Chem. 2019 Dec;34(1):1321-1346 [PMID: 31328585]
  44. Drugs. 2017 Dec;77(18):2063-2070 [PMID: 29128965]
  45. Cancers (Basel). 2019 Aug 25;11(9): [PMID: 31450709]
  46. Bioorg Med Chem Lett. 2017 Sep 15;27(18):4309-4313 [PMID: 28838691]
  47. Cancer Chemother Pharmacol. 2016 Jun;77(6):1103-24 [PMID: 26886018]
  48. Eur J Med Chem. 2018 Apr 25;150:9-29 [PMID: 29505935]
  49. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  50. Bioorg Chem. 2015 Dec;63:1-12 [PMID: 26368040]
  51. Eur J Med Chem. 2011 Sep;46(9):3714-20 [PMID: 21705114]
  52. Eur J Med Chem. 2018 Feb 25;146:460-470 [PMID: 29407971]
  53. Molecules. 2020 Oct 06;25(19): [PMID: 33036301]
  54. Bioorg Med Chem. 2017 Jan 1;25(1):27-37 [PMID: 27769671]
  55. Gigascience. 2017 Sep 1;6(9):1-7 [PMID: 28922823]
  56. Chem Biol Interact. 2018 Mar 25;284:24-31 [PMID: 29458018]
  57. PLoS One. 2018 Apr 9;13(4):e0195577 [PMID: 29630634]
  58. Toxicol Lett. 2018 Jul;291:138-148 [PMID: 29655783]
  59. Bioorg Chem. 2017 Jun;72:32-41 [PMID: 28346873]
  60. Mol Cancer Ther. 2007 Jan;6(1):70-81 [PMID: 17237267]
  61. Bioorg Med Chem Lett. 2014 Nov 15;24(22):5170-4 [PMID: 25442306]
  62. Bioorg Med Chem Lett. 2019 May 1;29(9):1138-1142 [PMID: 30837097]
  63. Front Pharmacol. 2020 Mar 20;11:343 [PMID: 32265714]
  64. Toxicol In Vitro. 2017 Apr;40:234-242 [PMID: 28119167]
  65. Bioorg Chem. 2021 Sep;114:105081 [PMID: 34153811]
  66. Eur J Med Chem. 2015 Jan 7;89:826-34 [PMID: 25462282]
  67. Chem Biol Interact. 2019 Apr 25;303:14-21 [PMID: 30802432]
  68. Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1461 [PMID: 31313504]
  69. Bioorg Chem. 2021 May;110:104748 [PMID: 33684714]
  70. Bioorg Med Chem Lett. 2017 Sep 1;27(17):3974-3979 [PMID: 28797799]
  71. FEBS Lett. 2012 Jul 4;586(14):1959-70 [PMID: 22710176]
  72. ACS Med Chem Lett. 2018 Dec 18;10(4):571-576 [PMID: 30996798]
  73. Bioorg Chem. 2017 Dec;75:86-98 [PMID: 28922629]
  74. ACS Omega. 2017 Jun 30;2(6):2422-2431 [PMID: 30023664]
  75. J Control Release. 2021 Jul 10;335:178-190 [PMID: 34022322]
  76. Eur J Med Chem. 2018 Jan 20;144:398-409 [PMID: 29288941]
  77. Bioorg Chem. 2018 Apr;77:106-124 [PMID: 29353728]
  78. Bioorg Med Chem Lett. 2015 Sep 1;25(17):3601-5 [PMID: 26174555]
  79. Future Oncol. 2009 May;5(4):421-32 [PMID: 19450171]
  80. Bioorg Med Chem. 2012 Jan 15;20(2):789-800 [PMID: 22209733]
  81. Bioorg Chem. 2016 Jun;66:63-71 [PMID: 27018835]
  82. PLoS One. 2011;6(6):e18691 [PMID: 21655094]
  83. Bioorg Med Chem. 2014 Sep 1;22(17):4735-44 [PMID: 25082515]
  84. J Med Chem. 2012 Sep 13;55(17):7817-27 [PMID: 22871158]
  85. Clin Ther. 2016 Jul;38(7):1551-66 [PMID: 27158009]
  86. Bioorg Med Chem Lett. 2012 Apr 15;22(8):2726-9 [PMID: 22440627]
  87. J Med Chem. 2014 Apr 24;57(8):3324-41 [PMID: 24694055]
  88. Eur J Med Chem. 2015 Jan 7;89:401-10 [PMID: 25462255]
  89. Biomed Pharmacother. 2017 Jun;90:24-37 [PMID: 28340378]
  90. Eur J Med Chem. 2013;70:447-55 [PMID: 24185375]
  91. Curr Med Chem. 2011;18(10):1464-75 [PMID: 21428895]
  92. Sci Rep. 2015 Aug 19;5:13101 [PMID: 26287982]
  93. Anticancer Res. 2014 Jan;34(1):471-6 [PMID: 24403503]
  94. Bioorg Med Chem Lett. 2014 Sep 15;24(18):4472-4476 [PMID: 25172421]
  95. Cancer Manag Res. 2019 May 01;11:3847-3860 [PMID: 31118801]
  96. Future Oncol. 2019 Jun;15(17):1975-1987 [PMID: 31074636]
  97. Curr Org Chem. 2019;23(9):978-993 [PMID: 32565717]
  98. Bioorg Med Chem Lett. 2014 Aug 15;24(16):3877-81 [PMID: 25001482]
  99. Toxicol Appl Pharmacol. 2016 Nov 1;310:140-149 [PMID: 27639429]
  100. Mol Pharmacol. 2012 Dec;82(6):1030-41 [PMID: 22923501]
  101. Eur J Med Chem. 2014 Oct 30;86:81-6 [PMID: 25147149]
  102. Drug Des Devel Ther. 2020 Feb 03;14:483-495 [PMID: 32099332]
  103. Eur J Med Chem. 2012 Apr;50:27-38 [PMID: 22325897]
  104. Eur J Med Chem. 2016 Nov 29;124:500-536 [PMID: 27598238]
  105. Eur J Med Chem. 2015 Jan 27;90:684-94 [PMID: 25499988]
  106. Molecules. 2021 Apr 29;26(9): [PMID: 33946916]
  107. Eur J Med Chem. 2015 Jun 5;97:871-910 [PMID: 25073919]
  108. Eur J Med Chem. 2021 Jan 1;209:112904 [PMID: 33077264]
  109. Eur J Med Chem. 2013 May;63:387-400 [PMID: 23517728]
  110. PLoS One. 2017 Aug 7;12(8):e0182149 [PMID: 28787001]
  111. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6854-9 [PMID: 24161833]
  112. Expert Opin Drug Discov. 2009 Nov;4(11):1099-111 [PMID: 23480431]
  113. Eur J Med Chem. 2017 Jan 5;125:245-254 [PMID: 27688180]
  114. Arch Pharm (Weinheim). 2021 Jan;354(1):e2000116 [PMID: 33015829]
  115. Expert Opin Drug Discov. 2013 Aug;8(8):1029-47 [PMID: 23646979]
  116. Breast Dis. 2021;40(2):51-62 [PMID: 33896802]
  117. Drug Des Devel Ther. 2017 Mar 03;11:599-616 [PMID: 28424538]
  118. Int J Mol Sci. 2018 Dec 25;20(1): [PMID: 30585189]
  119. Bioorg Med Chem Lett. 2013 Aug 1;23(15):4297-302 [PMID: 23800685]
  120. J Clin Invest. 2018 Jan 2;128(1):387-401 [PMID: 29200404]
  121. ACS Omega. 2021 Apr 29;6(18):12361-12374 [PMID: 34056388]
  122. Inorg Chem. 2012 Oct 1;51(19):10317-24 [PMID: 22957695]
  123. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761 [PMID: 31533062]
  124. Bioorg Med Chem Lett. 2018 Nov 15;28(21):3483-3488 [PMID: 30268702]
  125. Bioorg Med Chem Lett. 2014 Jul 1;24(13):2905-8 [PMID: 24835633]
  126. Bioorg Med Chem Lett. 2015 Mar 1;25(5):1124-8 [PMID: 25655718]
  127. Molecules. 2017 Dec 30;23(1): [PMID: 29301214]
  128. Eur J Med Chem. 2013 Apr;62:11-9 [PMID: 23353743]
  129. Eur J Med Chem. 2016 Nov 29;124:608-621 [PMID: 27614408]
  130. Eur J Med Chem. 2015 Apr 13;94:405-26 [PMID: 25794500]
  131. Sci Rep. 2019 Apr 19;9(1):6315 [PMID: 31004122]
  132. Nat Rev Cancer. 2021 Jan;21(1):37-50 [PMID: 33128031]
  133. Chem Cent J. 2018 Apr 4;12(1):38 [PMID: 29619583]
  134. Biomolecules. 2021 Jun 16;11(6): [PMID: 34208562]
  135. Eur J Med Chem. 2014 Aug 18;83:155-66 [PMID: 24956552]
  136. Eur J Med Chem. 2011 Jun;46(6):2102-8 [PMID: 21420205]
  137. Cell Death Dis. 2020 Jul 24;11(7):573 [PMID: 32709873]
  138. Eur J Med Chem. 2018 May 10;151:628-685 [PMID: 29656203]
  139. Horm Cancer. 2016 Jun;7(3):196-210 [PMID: 26957440]
  140. Eur J Med Chem. 2014 Apr 22;77:422-87 [PMID: 24685980]
  141. Medicine (Baltimore). 2021 May 28;100(21):e25992 [PMID: 34032715]
  142. Eur J Med Chem. 2017 Dec 15;142:179-212 [PMID: 28760313]
  143. Eur J Med Chem. 2020 Dec 15;208:112864 [PMID: 32987314]
  144. Dalton Trans. 2020 Apr 28;49(16):5192-5204 [PMID: 32236281]
  145. P T. 2016 May;41(5):296-300 [PMID: 27162469]
  146. Org Biomol Chem. 2018 Jul 7;16(25):4701-4714 [PMID: 29900452]
  147. Int J Mol Sci. 2021 Jan 25;22(3): [PMID: 33503871]
  148. Signal Transduct Target Ther. 2021 May 31;6(1):201 [PMID: 34054126]
  149. Chem Res Toxicol. 2016 May 16;29(5):784-96 [PMID: 26958860]
  150. ACS Med Chem Lett. 2013 Feb 14;4(2):235-238 [PMID: 23493449]
  151. Molecules. 2017 Dec 27;23(1): [PMID: 29280968]
  152. J Enzyme Inhib Med Chem. 2019 Dec;34(1):955-972 [PMID: 31072147]
  153. Bioorg Med Chem. 2018 May 1;26(8):1675-1685 [PMID: 29475582]
  154. Medchemcomm. 2017 Apr 13;8(9):1742-1773 [PMID: 30108886]
  155. Bioorg Med Chem Lett. 2016 Jan 15;26(2):460-465 [PMID: 26684853]
  156. Chem Biol Drug Des. 2021 Sep;98(3):435-444 [PMID: 34051050]
  157. Bioorg Med Chem. 2013 Sep 1;21(17):5012-20 [PMID: 23880083]
  158. Invest New Drugs. 2018 Dec;36(6):1072-1084 [PMID: 30198057]

Grants

  1. na/King Abdullah University of Science and Technology

Word Cloud

Created with Highcharts 10.0.0hybridanticancercomplexefficacypotentialdrugmoleculecompoundscancerRecentagentsmolecularhybridizationCancerdiseasetreatmentbigchallengevariableconventionaldrugstwo-drugcocktailapproachstrategyrecentdiscoveryinvolvescombinationtwopharmacophoressingleactsdistinctmodesactionseveraltargetsgiventimelesssusceptibilityresistanceThushugescopeusingtacklepresentdifficultiesmedicineworkappliedtechniqueuncoverinterestingmoleculessubstantialpropertiesstudyreportdatanumerouspromisinganti-proliferative/anti-tumordevelopedprevious10years2011-2021includesquinazolineindolecarbazolepyrimidinequinolinequinoneimidazoleseleniumplatinumhydroxamicacidferrocenecurcumintriazolebenzimidazoleisatinpyrrolobenzodiazepinePBDchalconecoumarinnitrogenmustardpyrazolepyridine-basedhybridsproducedviatechniquesOverallreviewoffersclearindicationbenefitsmergingpharmacophoricsubunitsmultipledifferentknownchemicalprototypesproducepotentpreciseprovidesvaluableknowledgeresearchersworkingdiseasesConceptHybridDrugsAdvancementsAnticancerHybridscelllinesvitropharmacophore

Similar Articles

Cited By