Molecular, Histological and Histochemical Responses of Banana Cultivars Challenged with f. sp. with Different Levels of Virulence.

Anelita de Jesus Rocha, Julianna Matos da Silva Soares, Fernanda Dos Santos Nascimento, Adailson Dos Santos Rocha, Vanusia Batista Oliveira de Amorim, Andresa Priscila de Souza Ramos, Cláudia Fortes Ferreira, Fernando Haddad, Edson Perito Amorim
Author Information
  1. Anelita de Jesus Rocha: Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil. ORCID
  2. Julianna Matos da Silva Soares: Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil. ORCID
  3. Fernanda Dos Santos Nascimento: Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil. ORCID
  4. Adailson Dos Santos Rocha: Departamento de Ciências Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Bahia, Brazil.
  5. Vanusia Batista Oliveira de Amorim: Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil.
  6. Andresa Priscila de Souza Ramos: Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil. ORCID
  7. Cláudia Fortes Ferreira: Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil. ORCID
  8. Fernando Haddad: Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil. ORCID
  9. Edson Perito Amorim: Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil. ORCID

Abstract

Fusarium wilt caused by f. sp. (Foc) is the most limiting factor in the banana agribusiness worldwide. Therefore, studies regarding pathogen attack mechanisms, and especially host defense responses, in this pathosystem are of utmost importance for genetic breeding programs in the development of Foc-resistant banana cultivars. In this study, analysis at the molecular, histological and histochemical levels of the spp. x Foc interaction was performed. Three Foc isolates representative of race 1 (R1), subtropical race 4 (ST4) and isolate 229A, which is a putative ST4, were inoculated in two Prata-type cultivars (Prata-Anã and BRS Platina) and one cultivar of the Cavendish type (Grand Naine). Of seven genes related to plant-pathogen interactions, five were overexpressed in 'BRS Platina' 12 h after inoculation (HAI) with Foc R1 and ST4 but had reduced or negative expression after inoculation with Foc 229A, according to RT-qPCR analyses. While hyphae, mycelia and spores of the Foc 229A isolate grow towards the central cylinder of the Grand Naine and Prata-Anã cultivars, culminating in the occlusion of the xylem vessels, the BRS Platina cultivar responds with increased presence of cellulose, phenolic compounds and calcium oxalate crystals, reducing colonization within 30 days after inoculation (DAI). In general, these data indicate that the cultivar BRS Platina has potential for use in banana-breeding programs focused on resistance to Foc tropical race 4 (TR4) and in aggregating information on the virulence relationships of the Foc pathogen and the defense responses of banana plants after infection.

Keywords

References

  1. Stress Biol. 2021 Aug 18;1(1):3 [PMID: 37676546]
  2. Phytopathology. 2006 Jun;96(6):653-6 [PMID: 18943184]
  3. Nucleic Acids Res. 2002 May 1;30(9):e36 [PMID: 11972351]
  4. Trends Plant Sci. 2009 Jul;14(7):373-82 [PMID: 19559643]
  5. Plants (Basel). 2022 Apr 04;11(7): [PMID: 35406959]
  6. Genes (Basel). 2022 Apr 02;13(4): [PMID: 35456444]
  7. J Fungi (Basel). 2021 Mar 04;7(3): [PMID: 33806475]
  8. J Fungi (Basel). 2021 Mar 25;7(4): [PMID: 33806239]
  9. Curr Opin Plant Biol. 2004 Aug;7(4):391-9 [PMID: 15231261]
  10. Plant Dis. 2017 Apr;101(4):534-543 [PMID: 30677364]
  11. BMC Genomics. 2012 Nov 21;13:650 [PMID: 23170772]
  12. Sci Rep. 2019 Sep 23;9(1):13682 [PMID: 31548557]
  13. J Integr Plant Biol. 2017 Feb;59(2):86-101 [PMID: 27995748]
  14. Plant Signal Behav. 2011 Mar;6(3):335-8 [PMID: 21336026]
  15. ISRN Biotechnol. 2012 Dec 06;2013:601303 [PMID: 25969777]
  16. BMC Genomics. 2012 Aug 05;13:374 [PMID: 22863187]
  17. Mol Plant Pathol. 2014 Sep;15(7):650-63 [PMID: 24433289]
  18. Front Microbiol. 2019 Apr 05;10:616 [PMID: 31024469]
  19. Physiol Plant. 2020 Jan;168(1):98-117 [PMID: 31017672]
  20. BMC Genet. 2020 Nov 11;21(1):122 [PMID: 33176672]
  21. Sci Rep. 2021 May 11;11(1):9948 [PMID: 33976263]
  22. Plant Cell. 2011 Apr;23(4):1639-53 [PMID: 21498677]
  23. Phytopathology. 2019 Jun;109(6):1029-1042 [PMID: 30829554]
  24. J Fungi (Basel). 2021 Aug 31;7(9): [PMID: 34575755]
  25. Front Microbiol. 2019 May 15;10:1062 [PMID: 31156584]
  26. BMC Genomics. 2013 Dec 05;14:851 [PMID: 24304681]
  27. Cell. 2015 May 21;161(5):1089-1100 [PMID: 26000484]
  28. Plant Physiol. 2010 Feb;152(2):948-67 [PMID: 19939946]
  29. Plant J. 2016 Oct;88(1):13-25 [PMID: 27258471]
  30. Appl Environ Microbiol. 2009 Jul;75(14):4770-81 [PMID: 19482953]
  31. J Fungi (Basel). 2021 Aug 08;7(8): [PMID: 34436185]
  32. Plant Cell Environ. 2013 Apr;36(4):757-74 [PMID: 22994555]
  33. Phytopathology. 2022 Nov;112(11):2416-2425 [PMID: 35759310]
  34. Mol Plant Pathol. 2007 May;8(3):333-41 [PMID: 20507503]
  35. Funct Integr Genomics. 2015 Jan;15(1):47-62 [PMID: 25277445]
  36. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8633-8 [PMID: 15932943]
  37. Plant Dis. 2022 Jun 29;:PDIS09211951PDN [PMID: 34918946]
  38. PLoS One. 2017 Jul 18;12(7):e0181630 [PMID: 28719631]
  39. Plant Cell. 2017 Apr;29(4):618-637 [PMID: 28302675]
  40. Trends Plant Sci. 2000 May;5(5):199-206 [PMID: 10785665]
  41. Mol Breed. 2012 Oct;30(3):1237-1252 [PMID: 23024595]
  42. Phytochem Anal. 2012 Nov-Dec;23(6):647-50 [PMID: 22552877]
  43. Front Plant Sci. 2018 Oct 19;9:1468 [PMID: 30405651]
  44. Trends Plant Sci. 2017 Oct;22(10):871-879 [PMID: 28743380]
  45. J Adv Res. 2023 Jan;43:13-26 [PMID: 36585103]
  46. PLoS One. 2013 Sep 23;8(9):e73945 [PMID: 24086302]
  47. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  48. Nature. 2012 Aug 9;488(7410):213-7 [PMID: 22801500]
  49. Int J Mol Sci. 2018 Jan 24;19(2): [PMID: 29364855]
  50. Trends Plant Sci. 2010 May;15(5):247-58 [PMID: 20304701]
  51. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  52. Plants (Basel). 2021 Feb 19;10(2): [PMID: 33669710]
  53. Sci Rep. 2019 Jun 3;9(1):8199 [PMID: 31160634]
  54. Stud Mycol. 2019 Mar;92:155-194 [PMID: 30122796]
  55. J Fungi (Basel). 2021 Mar 18;7(3): [PMID: 33803818]
  56. BMC Genomics. 2019 Jun 24;20(1):519 [PMID: 31234790]
  57. Front Plant Sci. 2018 Nov 27;9:1748 [PMID: 30538716]
  58. Front Plant Sci. 2016 Jun 03;7:760 [PMID: 27375634]
  59. BMC Biol. 2021 Aug 17;19(1):161 [PMID: 34404410]
  60. Stain Technol. 1975 Sep;50(5):319-29 [PMID: 54956]
  61. PLoS One. 2015 Apr 07;10(4):e0122634 [PMID: 25849862]
  62. Int J Adv Res (Indore). 2016 Mar;4(3):411-427 [PMID: 27819009]

Grants

  1. OPP1093845/Bill & Melinda Gates Foundation
  2. OPP1093845/International Institute of Tropical Agriculture

Word Cloud

Created with Highcharts 10.0.0FocbananacultivarsraceST4229ABRSPlatinacultivarinoculationwiltfsppathogendefenseresponsesprogramssppR14isolatePrata-AnãGrandNaineexpressionresistanceFusariumcausedlimitingfactoragribusinessworldwideThereforestudiesregardingattackmechanismsespeciallyhostpathosystemutmostimportancegeneticbreedingdevelopmentFoc-resistantstudyanalysismolecularhistologicalhistochemicallevelsxinteractionperformedThreeisolatesrepresentative1subtropicalputativeinoculatedtwoPrata-typeoneCavendishtypesevengenesrelatedplant-pathogeninteractionsfiveoverexpressed'BRSPlatina'12hHAIreducednegativeaccordingRT-qPCRanalyseshyphaemyceliasporesgrowtowardscentralcylinderculminatingocclusionxylemvesselsrespondsincreasedpresencecellulosephenoliccompoundscalciumoxalatecrystalsreducingcolonizationwithin30daysDAIgeneraldataindicatepotentialusebanana-breedingfocusedtropicalTR4aggregatinginformationvirulencerelationshipsplantsinfectionMolecularHistologicalHistochemicalResponsesBananaCultivarsChallengedDifferentLevelsVirulenceMusafusariumgeneplant

Similar Articles

Cited By