Varidnaviruses in the Human Gut: A Major Expansion of the Order .

Natalya Yutin, Mike Rayko, Dmitry Antipov, Pascal Mutz, Yuri I Wolf, Mart Krupovic, Eugene V Koonin
Author Information
  1. Natalya Yutin: National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
  2. Mike Rayko: Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia. ORCID
  3. Dmitry Antipov: Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia.
  4. Pascal Mutz: National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA. ORCID
  5. Yuri I Wolf: National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA. ORCID
  6. Mart Krupovic: Archaeal Virology Unit, Institut Pasteur, Universit�� Paris Cit��, CNRS UMR6047, F-75015 Paris, France. ORCID
  7. Eugene V Koonin: National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA. ORCID

Abstract

Bacteriophages play key roles in the dynamics of the human microbiome. By far the most abundant components of the human gut virome are tailed bacteriophages of the realm , in particular, crAss-like phages. However, apart from duplodnaviruses, the gut virome has not been dissected in detail. Here we report a comprehensive census of a minor component of the gut virome, the tailless bacteriophages of the realm . Tailless phages are primarily represented in the gut by prophages, that are mostly integrated in genomes of and and belong to the order which currently consists of the families and Phylogenetic analysis of the major capsid proteins (MCP) suggests that at least three new families should be established within to accommodate the diversity of prophages from the human gut virome. Previously, only the MCP and packaging ATPase genes were reported as conserved core genes of . Here we report an extended core set of 12 proteins, including MCP, packaging ATPase, and previously undetected lysis enzymes, that are shared by most of these viruses. We further demonstrate that replication system components are frequently replaced in the genomes of , suggestive of selective pressure for escape from yet unknown host defenses or avoidance of incompatibility with coinfecting related viruses. The results of this analysis show that, in a sharp contrast to marine viromes, varidnaviruses are a minor component of the human gut virome. Moreover, they are primarily represented by prophages, as indicated by the analysis of the flanking genes, suggesting that there are few, if any, lytic varidnavirus infections in the gut at any given time. These findings complement the existing knowledge of the human gut virome by exploring a group of viruses that has been virtually overlooked in previous work.

Keywords

References

  1. Nat Commun. 2018 Nov 14;9(1):4781 [PMID: 30429469]
  2. BMC Bioinformatics. 2007 Jun 18;8:209 [PMID: 17577412]
  3. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  4. BMC Genomics. 2007 Jul 16;8:236 [PMID: 17634101]
  5. Protein Sci. 2021 Jan;30(1):70-82 [PMID: 32881101]
  6. Nat Commun. 2014 Jul 24;5:4498 [PMID: 25058116]
  7. Microbiome. 2021 Mar 29;9(1):78 [PMID: 33781338]
  8. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  9. Mol Cell. 2008 Sep 5;31(5):749-61 [PMID: 18775333]
  10. mBio. 2019 Mar 5;10(2): [PMID: 30837339]
  11. Virol J. 2018 Apr 10;15(1):67 [PMID: 29636073]
  12. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  13. Protein Sci. 2020 Jan;29(1):128-140 [PMID: 31606894]
  14. Adv Virus Res. 2019;103:167-202 [PMID: 30635076]
  15. Bioinformatics. 2005 Apr 1;21(7):951-60 [PMID: 15531603]
  16. Nat Commun. 2021 Feb 16;12(1):1044 [PMID: 33594055]
  17. J Gen Virol. 2017 May;98(5):888-889 [PMID: 28581380]
  18. Cell Host Microbe. 2019 Feb 13;25(2):195-209 [PMID: 30763534]
  19. Nat Biotechnol. 2017 Nov;35(11):1026-1028 [PMID: 29035372]
  20. Cell Host Microbe. 2018 Nov 14;24(5):653-664.e6 [PMID: 30449316]
  21. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2401-E2410 [PMID: 28265094]
  22. Mol Microbiol. 2007 Jun;64(6):1635-48 [PMID: 17555443]
  23. Microbiol Rev. 1987 Dec;51(4):381-95 [PMID: 3325793]
  24. J Bacteriol. 2004 Aug;186(16):5342-54 [PMID: 15292135]
  25. Virol J. 2013 May 23;10:158 [PMID: 23701946]
  26. Mucosal Immunol. 2020 Mar;13(2):205-215 [PMID: 31907364]
  27. Nat Biotechnol. 2024 Feb;42(2):243-246 [PMID: 37156916]
  28. J Virol. 2006 Sep;80(18):9270-8 [PMID: 16940538]
  29. Front Cell Infect Microbiol. 2021 Jun 04;11:643214 [PMID: 34150671]
  30. Genome Announc. 2018 May 24;6(21): [PMID: 29798916]
  31. Sci Rep. 2022 Mar 23;12(1):5005 [PMID: 35322067]
  32. Annu Rev Biochem. 2012;81:795-822 [PMID: 22482909]
  33. Virology. 1999 Sep 30;262(2):355-63 [PMID: 10502514]
  34. J Bacteriol. 2011 Jan;193(1):125-31 [PMID: 20971910]
  35. Nature. 2018 Feb 1;554(7690):118-122 [PMID: 29364876]
  36. Microbiol Resour Announc. 2019 Apr 11;8(15): [PMID: 30975794]
  37. Nat Rev Microbiol. 2008 Dec;6(12):941-8 [PMID: 19008892]
  38. Nat Microbiol. 2018 Jan;3(1):38-46 [PMID: 29133882]
  39. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34083435]
  40. ISME J. 2013 Sep;7(9):1738-51 [PMID: 23635867]
  41. Proc Natl Acad Sci U S A. 2022 Feb 1;119(5): [PMID: 35078938]
  42. Mol Microbiol. 1994 May;12(4):535-45 [PMID: 7934877]
  43. Microbiol Mol Biol Rev. 2020 Mar 4;84(2): [PMID: 32132243]
  44. mBio. 2020 Jan 14;11(1): [PMID: 31937645]
  45. J Mol Biol. 2001 Nov 2;313(4):785-95 [PMID: 11697904]
  46. J Bacteriol. 2003 Jun;185(11):3278-87 [PMID: 12754225]
  47. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  48. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10400-5 [PMID: 27573828]
  49. Cell Host Microbe. 2019 Oct 9;26(4):527-541.e5 [PMID: 31600503]
  50. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  51. Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20180092 [PMID: 30905291]
  52. Nucleic Acids Res. 2018 Jan 4;46(D1):D8-D13 [PMID: 29140470]

Grants

  1. Intramural funds/NIH HHS

MeSH Term

Adenosine Triphosphatases
Bacteriophages
Capsid Proteins
Humans
Intestines
Phylogeny
Prophages
Viruses

Chemicals

Capsid Proteins
Adenosine Triphosphatases

Word Cloud

Created with Highcharts 10.0.0guthumanviromeprophagesanalysisMCPgenesvirusescomponentsbacteriophagesrealmphagesreportminorcomponentprimarilyrepresentedgenomesfamiliescapsidproteinspackagingATPasecoreBacteriophagesplaykeyrolesdynamicsmicrobiomefarabundanttailedparticularcrAss-likeHoweverapartduplodnavirusesdissecteddetailcomprehensivecensustaillessTaillessmostlyintegratedbelongordercurrentlyconsistsPhylogeneticmajorsuggestsleastthreenewestablishedwithinaccommodatediversityPreviouslyreportedconservedextendedset12includingpreviouslyundetectedlysisenzymesshareddemonstratereplicationsystemfrequentlyreplacedsuggestiveselectivepressureescapeyetunknownhostdefensesavoidanceincompatibilitycoinfectingrelatedresultsshowsharpcontrastmarineviromesvaridnavirusesMoreoverindicatedflankingsuggestinglyticvaridnavirusinfectionsgiventimefindingscomplementexistingknowledgeexploringgroupvirtuallyoverlookedpreviousworkVaridnavirusesHumanGut:MajorExpansionOrderAutolykiviridaeCorticoviridaeVaridnaviriaVinaviralesdoublejellyrollmetagenome

Similar Articles

Cited By