State space methods for phase amplitude coupling analysis.

Hugo Soulat, Emily P Stephen, Amanda M Beck, Patrick L Purdon
Author Information
  1. Hugo Soulat: Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
  2. Emily P Stephen: Department of Mathematics and Statistics, Boston University, Boston, MA, USA.
  3. Amanda M Beck: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
  4. Patrick L Purdon: Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. patrick.purdon@mgh.harvard.edu.

Abstract

Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination of brain circuits and systems. There are however growing concerns that existing methods for PAC analysis are prone to error and misinterpretation. Improper frequency band selection can render true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious PAC. Current methods require large amounts of data and lack formal statistical inference tools. We describe here a novel approach for PAC analysis that substantially addresses these problems. We use a state space model to estimate the component oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in parametric and time-varying forms to further improve statistical efficiency and estimate the posterior distribution of the coupling parameters to derive their credible intervals. We demonstrate the method using simulated data, rat local field potentials (LFP) data, and human EEG data.

References

  1. Neural Comput. 2017 Aug;29(8):2055-2075 [PMID: 28562213]
  2. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17356-61 [PMID: 20855620]
  3. Schizophr Bull. 2011 Jul;37(4):659-63 [PMID: 21653278]
  4. J Neurosci. 2013 Apr 24;33(17):7220-33 [PMID: 23616531]
  5. J Neurosci. 2014 Jan 15;34(3):839-45 [PMID: 24431442]
  6. Nat Rev Neurosci. 2012 May 18;13(6):407-20 [PMID: 22595786]
  7. Science. 1995 Mar 10;267(5203):1512-5 [PMID: 7878473]
  8. J Neurophysiol. 2005 Mar;93(3):1776-92 [PMID: 15456798]
  9. Front Syst Neurosci. 2011 Jul 14;5:59 [PMID: 21808609]
  10. Br J Anaesth. 2018 Jul;121(1):325-327 [PMID: 29935587]
  11. PLoS Comput Biol. 2017 Dec 11;13(12):e1005879 [PMID: 29227992]
  12. J Neurophysiol. 2010 Aug;104(2):1195-210 [PMID: 20463205]
  13. J Neurosci. 2010 May 12;30(19):6667-77 [PMID: 20463229]
  14. Biol Psychiatry. 2012 May 15;71(10):873-80 [PMID: 22361076]
  15. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20517-22 [PMID: 19074268]
  16. Neuron. 2013 Mar 20;77(6):1002-16 [PMID: 23522038]
  17. Front Neural Circuits. 2016 Jan 14;9:88 [PMID: 26834569]
  18. J Neurosci. 2010 Mar 24;30(12):4481-8 [PMID: 20335484]
  19. N Engl J Med. 2010 Dec 30;363(27):2638-50 [PMID: 21190458]
  20. Nat Neurosci. 2020 Dec;23(12):1655-1665 [PMID: 33230329]
  21. PLoS Biol. 2020 May 6;18(5):e3000685 [PMID: 32374723]
  22. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33 [PMID: 20133762]
  23. PLoS Comput Biol. 2017 Dec 11;13(12):e1005893 [PMID: 29227989]
  24. Curr Opin Neurobiol. 2015 Apr;31:51-61 [PMID: 25212583]
  25. Int J Neurosci. 1992 Sep;66(1-2):119-29 [PMID: 1304564]
  26. Trends Cogn Sci. 2017 Feb;21(2):137-149 [PMID: 28063662]
  27. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7580-5 [PMID: 20368447]
  28. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1981-4 [PMID: 22254722]
  29. IEEE Trans Biomed Eng. 2014 May;61(5):1555-64 [PMID: 24759284]
  30. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4780-5 [PMID: 23471992]
  31. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4740-4743 [PMID: 30441408]
  32. Trends Cogn Sci. 2019 Feb;23(2):87-101 [PMID: 30591373]
  33. Science. 2009 May 29;324(5931):1207-10 [PMID: 19478185]
  34. Biophys J. 2009 Apr 8;96(7):2589-603 [PMID: 19348744]
  35. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):7054-9 [PMID: 20351262]
  36. Psychol Sci. 2011 Apr;22(4):507-16 [PMID: 21378369]
  37. Neuroimage. 2022 May 15;252:119053 [PMID: 35247548]
  38. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):18023-8 [PMID: 19004759]
  39. Science. 2006 Sep 15;313(5793):1626-8 [PMID: 16973878]
  40. Anesthesiology. 2015 Oct;123(4):937-60 [PMID: 26275092]
  41. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1142-51 [PMID: 23487781]
  42. Trends Cogn Sci. 2010 Nov;14(11):506-15 [PMID: 20932795]
  43. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20942-7 [PMID: 19934062]
  44. Annu Rev Neurosci. 2011;34:601-28 [PMID: 21513454]
  45. Br J Anaesth. 2017 Oct 01;119(4):664-673 [PMID: 29121278]
  46. J Neurosci Methods. 2013 Oct 30;220(1):64-74 [PMID: 24012829]

Grants

  1. P01GM118269/NIH HHS
  2. R01AG056015/NIH HHS
  3. R01AG054081/NIH HHS
  4. R21DA048323/NIH HHS

MeSH Term

Animals
Brain
Electroencephalography
Humans
Rats

Word Cloud

Created with Highcharts 10.0.0PACcouplingdatamethodsanalysisamplitudefrequencybandselectioncansignalstatisticalproblemsspaceestimatePhasethoughtplayfundamentalroledynamiccoordinationbraincircuitssystemshowevergrowingconcernsexistingproneerrormisinterpretationImproperrendertrueundetectablenon-linearitiesabruptchangesproducespuriousCurrentrequirelargeamountslackformalinferencetoolsdescribenovelapproachsubstantiallyaddressesusestatemodelcomponentoscillationsavoidingnonlinearitiessharptransitionsrepresentcross-frequencyparametrictime-varyingformsimproveefficiencyposteriordistributionparametersderivecredibleintervalsdemonstratemethodusingsimulatedratlocalfieldpotentialsLFPhumanEEGStatephase

Similar Articles

Cited By