Source and acquisition of rhizosphere microbes in Antarctic vascular plants.

Sergio Guajardo-Leiva, Jaime Alarcón, Florence Gutzwiller, Jorge Gallardo-Cerda, Ian S Acuña-Rodríguez, Marco Molina-Montenegro, Keith A Crandall, Marcos Pérez-Losada, Eduardo Castro-Nallar
Author Information
  1. Sergio Guajardo-Leiva: Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.
  2. Jaime Alarcón: Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
  3. Florence Gutzwiller: Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
  4. Jorge Gallardo-Cerda: Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
  5. Ian S Acuña-Rodríguez: Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile.
  6. Marco Molina-Montenegro: Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile.
  7. Keith A Crandall: Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States.
  8. Marcos Pérez-Losada: Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States.
  9. Eduardo Castro-Nallar: Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.

Abstract

Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, (Da) and (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.

Keywords

References

  1. Front Microbiol. 2017 Dec 18;8:2529 [PMID: 29326674]
  2. Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1157-E1165 [PMID: 29358405]
  3. PLoS One. 2019 Jan 9;14(1):e0209887 [PMID: 30625192]
  4. PLoS Biol. 2016 Jan 20;14(1):e1002352 [PMID: 26788878]
  5. Adv Appl Microbiol. 2020;110:63-98 [PMID: 32386606]
  6. J Fungi (Basel). 2021 Dec 16;7(12): [PMID: 34947064]
  7. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):585-92 [PMID: 24379374]
  8. Nat Rev Microbiol. 2013 Nov;11(11):789-99 [PMID: 24056930]
  9. Front Microbiol. 2021 Aug 16;12:713523 [PMID: 34484152]
  10. ISME J. 2010 Aug;4(8):989-1001 [PMID: 20357834]
  11. Environ Microbiol. 2021 Apr;23(4):2199-2214 [PMID: 33427409]
  12. Front Microbiol. 2018 Apr 03;9:552 [PMID: 29666609]
  13. Nature. 2017 Nov 23;551(7681):457-463 [PMID: 29088705]
  14. Front Microbiol. 2020 Jun 30;11:1391 [PMID: 32695081]
  15. Front Microbiol. 2020 Dec 21;11:560406 [PMID: 33408698]
  16. Front Microbiol. 2012 Dec 05;3:403 [PMID: 23227023]
  17. Front Microbiol. 2019 Feb 15;10:242 [PMID: 30828325]
  18. Microbiol Resour Announc. 2020 Dec 10;9(50): [PMID: 33303663]
  19. New Phytol. 2021 Jun;230(5):2047-2060 [PMID: 33626176]
  20. J Fungi (Basel). 2022 Jan 30;8(2): [PMID: 35205899]
  21. Front Microbiol. 2021 May 06;12:569791 [PMID: 34025590]
  22. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  23. Microbiol Resour Announc. 2018 Sep 27;7(12): [PMID: 30533652]
  24. ISME J. 2008 Apr;2(4):404-16 [PMID: 18256707]
  25. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  26. PLoS One. 2018 Jan 31;13(1):e0189947 [PMID: 29385175]
  27. Nat Commun. 2017 Aug 9;8(1):215 [PMID: 28790312]
  28. Front Microbiol. 2021 Feb 16;12:628792 [PMID: 33664717]
  29. Nat Ecol Evol. 2020 Jan;4(1):122-131 [PMID: 31900452]
  30. Microbiome. 2019 Apr 1;7(1):51 [PMID: 30935409]
  31. Front Plant Sci. 2020 Jan 24;10:1741 [PMID: 32038698]
  32. Plant Cell Environ. 2009 Dec;32(12):1682-94 [PMID: 19671096]
  33. Int J Syst Evol Microbiol. 2017 Aug;67(8):3099-3104 [PMID: 28820117]
  34. FEMS Microbiol Ecol. 2019 Aug 1;95(8): [PMID: 31260044]
  35. Nat Rev Microbiol. 2017 Oct;15(10):579-590 [PMID: 28824177]
  36. Plant J. 2020 Aug;103(3):951-964 [PMID: 32324287]
  37. J Microbiol. 2012 Dec;50(6):1081-5 [PMID: 23275001]
  38. mSystems. 2020 Apr 21;5(2): [PMID: 32317392]
  39. ISME J. 2020 Feb;14(2):463-475 [PMID: 31659233]
  40. Int J Syst Evol Microbiol. 2010 Oct;60(Pt 10):2451-2457 [PMID: 19946048]
  41. ISME J. 2018 Apr;12(4):1072-1083 [PMID: 29515169]
  42. New Phytol. 2011 May;190(3):783-93 [PMID: 21244432]
  43. Sci Rep. 2019 Feb 25;9(1):2686 [PMID: 30804443]
  44. Ecol Lett. 2020 Jun;23(6):1034-1048 [PMID: 32281227]
  45. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  46. FEMS Microbiol Ecol. 2010 Jun;72(3):313-27 [PMID: 20370828]
  47. PLoS One. 2013 Jun 20;8(6):e66109 [PMID: 23840411]
  48. Microbiome. 2018 Apr 26;6(1):79 [PMID: 29695286]
  49. FEMS Microbiol Ecol. 2019 Jun 1;95(6): [PMID: 31054240]
  50. Nat Commun. 2022 Feb 11;13(1):836 [PMID: 35149704]
  51. Microorganisms. 2017 Nov 10;5(4): [PMID: 29125552]
  52. Science. 2018 Jan 19;359(6373):320-325 [PMID: 29348236]
  53. FEMS Microbiol Ecol. 2021 Jan 26;97(2): [PMID: 33332530]
  54. Nat Methods. 2011 Jul 17;8(9):761-3 [PMID: 21765408]
  55. Mol Ecol. 2014 Jul;23(13):3356-70 [PMID: 24894495]
  56. Mol Ecol. 2019 Feb;28(4):863-878 [PMID: 30575197]
  57. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  58. FEMS Microbiol Ecol. 2006 May;56(2):236-49 [PMID: 16629753]
  59. Nat Rev Microbiol. 2010 Feb;8(2):129-38 [PMID: 20075927]
  60. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  61. J Adv Res. 2020 Apr 29;24:337-352 [PMID: 32461810]
  62. FEMS Microbiol Ecol. 2020 Oct 29;96(11): [PMID: 32918451]
  63. BMC Microbiol. 2019 Sep 2;19(1):201 [PMID: 31477026]
  64. Front Microbiol. 2020 Feb 07;11:126 [PMID: 32117148]
  65. Microbiome. 2017 Apr 8;5(1):42 [PMID: 28388929]
  66. Nat Commun. 2018 Nov 20;9(1):4894 [PMID: 30459421]
  67. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  68. Science. 2014 Nov 28;346(6213):1256688 [PMID: 25430773]
  69. Front Microbiol. 2016 Sep 26;7:1488 [PMID: 27725809]
  70. ISME J. 2018 Jun;12(7):1794-1805 [PMID: 29523892]
  71. Appl Environ Microbiol. 2020 Feb 18;86(5): [PMID: 31862727]
  72. Nat Microbiol. 2019 Jun;4(6):925-932 [PMID: 30833723]
  73. FEMS Microbiol Ecol. 2009 Apr;68(1):1-13 [PMID: 19243436]
  74. Microb Ecol. 2016 Oct;72(3):633-46 [PMID: 27406732]
  75. Sci Rep. 2020 Apr 2;10(1):5819 [PMID: 32242034]
  76. Front Microbiol. 2022 Jan 13;12:798476 [PMID: 35095808]
  77. mBio. 2019 Dec 17;10(6): [PMID: 31848279]
  78. Microorganisms. 2021 Mar 15;9(3): [PMID: 33804278]
  79. Sci Total Environ. 2022 Mar 1;810:152003 [PMID: 34856283]
  80. Microb Ecol. 2021 Oct 18;: [PMID: 34661728]

Word Cloud

Created with Highcharts 10.0.0rhizosphereplantDaCqspeciescommunitiesdiversitymicrobialfungalsourcessoilsmicrobesacquisitionhostlocalcompositionsoilsourcecommunityAntarcticplantsByersPeninsulainfluencedrichnessbacterialbacteriacontrastiesamplingsiteshowsfungiacquiringcontributionunknownstochasticprocesseseffectsRhizosphereexertcriticalroleshealthnutrientcyclingfertilityDespiteessentialfunctionsconferredentirelyclearThereforeinvestigatedpotentialusingtwonativemodelsinterrogatedbulkmicrobiomessixlocationsLivingstonIslandAntarcticaindividualassociationresultsshowshowedlowestcomparedrhizosphereswhereasexhibitedhigherAlsofoundenvironmentalgeographicpressureslatitudealtitudelesserextentbioticfactorsdeterminedturnoverMoreoveranalysiscontributedhomogenizingdifferentgrowingdistantspecificeffectHoweverespeciallyindicatesexistencerelevantstudydifferdifferencesexplainedmainlyharboractingtogetherspecies-specificacquireformpartSeeminglyprocesscomplexidentifiedsignificantdueknownacrossSourcevascularSouthShetlandIslandsampliconsequencingmicrobeinteractionsecologymicrobiome

Similar Articles

Cited By