Physicochemical characterization of a polysaccharide from Tratt fruit and its antitumor activity by activating ROS mediated pathways.

Yanlin Jin, Yinghua Li, Lei Wang, Xiong Fu, Chao Li
Author Information
  1. Yanlin Jin: School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
  2. Yinghua Li: Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
  3. Lei Wang: School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
  4. Xiong Fu: School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
  5. Chao Li: School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Abstract

Tratt fruit is a highly valued fruit that contains abundant functional and nutritional constituents. In this study, a novel polysaccharide, named RTFP-1, was isolated and purified from Tratt fruit. Structural characterization indicated that RTFP-1 was a homogeneous heteropolysaccharide with the molecular weight (Mw) of 128.7 kDa and consisted of arabinose, galactose, glucose, mannose, xylose, and fucose with molar ratio percentages of 34.84, 40.59, 12.11, 5.06, 3.39, and 4.01%, respectively. A CCK-8 assay indicated that RTFP-1 inhibited the cell growth of HepG2 cells in a dose-dependent manner. Morphological analysis and flow cytometry experiment showed that RTFP-1 promoted the apoptosis of HepG2 cells and increased reactive oxygen species (ROS) level. The underlying molecular mechanisms indicated that RTFP-1 activated the apoptosis of HepG2 cells through ROS-mediated MAPK, STAT, and p53 apoptotic pathways. These results suggest that RTFP-1 might be a potential chemopreventive and antitumor agent.

Keywords

References

  1. J Exp Clin Cancer Res. 2018 Nov 1;37(1):266 [PMID: 30382874]
  2. Nat Rev Clin Oncol. 2020 Jul;17(7):395-417 [PMID: 32203277]
  3. Carbohydr Polym. 2016 Aug 20;147:401-408 [PMID: 27178946]
  4. J Clin Exp Hepatol. 2019 Mar-Apr;9(2):233-244 [PMID: 31024206]
  5. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  6. Hepatology. 2021 Jan;73 Suppl 1:4-13 [PMID: 32319693]
  7. Semin Cancer Biol. 2020 Feb;60:41-56 [PMID: 31605750]
  8. Asian Pac J Cancer Prev. 2014;15(23):10351-4 [PMID: 25556474]
  9. Int J Biol Macromol. 2013 Oct;61:270-5 [PMID: 23817098]
  10. Int J Mol Sci. 2020 Feb 07;21(3): [PMID: 32046099]
  11. Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110100 [PMID: 31753388]
  12. Carbohydr Polym. 2020 Apr 15;234:115897 [PMID: 32070517]
  13. Biochim Biophys Acta Rev Cancer. 2020 Jan;1873(1):188314 [PMID: 31682895]
  14. Food Funct. 2018 Jul 17;9(7):3974-3985 [PMID: 29974117]
  15. Food Funct. 2022 Aug 30;13(17):8880-8891 [PMID: 35924964]
  16. Cell Signal. 2012 May;24(5):981-90 [PMID: 22286106]
  17. J Agric Food Chem. 2020 Jan 8;68(1):147-159 [PMID: 31826616]
  18. Immunity. 2019 Jun 18;50(6):1352-1364 [PMID: 31216460]
  19. R Soc Open Sci. 2018 Nov 28;5(11):180509 [PMID: 30564384]
  20. Carbohydr Polym. 2021 Jul 15;264:118018 [PMID: 33910741]
  21. Int J Biol Macromol. 2018 Feb;107(Pt A):166-174 [PMID: 28866014]
  22. Int J Biol Macromol. 2018 Jun;112:473-482 [PMID: 29412175]
  23. Nanoscale Res Lett. 2016 Dec;11(1):198 [PMID: 27075340]
  24. Food Funct. 2021 Mar 1;12(4):1432-1451 [PMID: 33533385]
  25. Int J Biol Macromol. 2013 Jan;52:52-8 [PMID: 22982812]
  26. Food Nutr Res. 2020 Oct 21;64: [PMID: 33240031]
  27. Cell Prolif. 2019 Sep;52(5):e12663 [PMID: 31347748]
  28. Food Chem. 2018 May 30;249:127-135 [PMID: 29407915]
  29. Carbohydr Polym. 2019 Apr 15;210:412-428 [PMID: 30732778]
  30. Mol Cell Biol. 2005 Sep;25(17):7432-40 [PMID: 16107692]
  31. Cancers (Basel). 2019 Oct 22;11(10): [PMID: 31652660]
  32. Food Funct. 2019 Feb 20;10(2):539-553 [PMID: 30662993]
  33. Int J Nanomedicine. 2016 Dec 08;11:6693-6702 [PMID: 27994465]
  34. Food Chem. 2022 May 30;377:131922 [PMID: 34979396]

Word Cloud

Created with Highcharts 10.0.0RTFP-1fruitTrattindicatedHepG2cellspolysaccharidecharacterizationmolecularapoptosisROSpathwaysantitumorhighlyvaluedcontainsabundantfunctionalnutritionalconstituentsstudynovelnamedisolatedpurifiedStructuralhomogeneousheteropolysaccharideweightMw1287 kDaconsistedarabinosegalactoseglucosemannosexylosefucosemolarratiopercentages348440591211506339401%respectivelyCCK-8assayinhibitedcellgrowthdose-dependentmannerMorphologicalanalysisflowcytometryexperimentshowedpromotedincreasedreactiveoxygenspecieslevelunderlyingmechanismsactivatedROS-mediatedMAPKSTATp53apoptoticresultssuggestmightpotentialchemopreventiveagentPhysicochemicalactivityactivatingmediatedAntitumorMechanismPolysaccharideRosaroxburghii

Similar Articles

Cited By