Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves.

Pietro Dirix, Stefano Buoso, Eva S Peper, Sebastian Kozerke
Author Information
  1. Pietro Dirix: Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland. dirix@biomed.ee.ethz.ch.
  2. Stefano Buoso: Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
  3. Eva S Peper: Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
  4. Sebastian Kozerke: Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.

Abstract

We propose to synthesize patient-specific 4D flow MRI datasets of turbulent flow paired with ground truth flow data to support training of inference methods. Turbulent blood flow is computed based on the Navier-Stokes equations with moving domains using realistic boundary conditions for aortic shapes, wall displacements and inlet velocities obtained from patient data. From the simulated flow, synthetic multipoint 4D flow MRI data is generated with user-defined spatiotemporal resolutions and reconstructed with a Bayesian approach to compute time-varying velocity and turbulence maps. For MRI data synthesis, a fixed hypothetical scan time budget is assumed and accordingly, changes to spatial resolution and time averaging result in corresponding scaling of signal-to-noise ratios (SNR). In this work, we focused on aortic stenotic flow and quantification of turbulent kinetic energy (TKE). Our results show that for spatial resolutions of 1.5 and 2.5 mm and time averaging of 5 ms as encountered in 4D flow MRI in practice, peak total turbulent kinetic energy downstream of a 50, 75 and 90% stenosis is overestimated by as much as 23, 15 and 14% (1.5 mm) and 38, 24 and 23% (2.5 mm), demonstrating the importance of paired ground truth and 4D flow MRI data for assessing accuracy and precision of turbulent flow inference using 4D flow MRI exams.

References

  1. Magn Reson Med. 2016 Jul;76(1):191-6 [PMID: 26258402]
  2. JACC Cardiovasc Imaging. 2019 Feb;12(2):252-266 [PMID: 30732721]
  3. Quant Imaging Med Surg. 2021 Sep;11(9):4193-4210 [PMID: 34476199]
  4. J Biomech. 2017 Jun 14;58:162-173 [PMID: 28577904]
  5. J Biomech Eng. 2008 Feb;130(1):014503 [PMID: 18298194]
  6. Circ Cardiovasc Imaging. 2017 Jun;10(6): [PMID: 28611119]
  7. JACC Cardiovasc Imaging. 2013 Jan;6(1):64-71 [PMID: 23328563]
  8. Magn Reson Med. 2013 May;69(5):1337-45 [PMID: 22700280]
  9. J Cardiovasc Magn Reson. 2019 Jan 7;21(1):1 [PMID: 30612574]
  10. J Magn Reson Imaging. 2012 Nov;36(5):1015-36 [PMID: 23090914]
  11. Sci Rep. 2016 Dec 22;6:39773 [PMID: 28004789]
  12. J Biomech. 2015 May 1;48(7):1325-30 [PMID: 25841292]
  13. Magn Reson Med. 2010 Oct;64(4):1039-46 [PMID: 20574963]
  14. Magn Reson Med. 2020 Oct;84(4):2204-2218 [PMID: 32167203]
  15. Med Image Anal. 2021 Jul;71:102066 [PMID: 33951597]
  16. J Am Coll Cardiol. 2012 Nov 6;60(19):1854-63 [PMID: 23062541]
  17. Magn Reson Med. 2019 Jun;81(6):3675-3690 [PMID: 30803006]
  18. J Cardiovasc Magn Reson. 2019 Oct 7;21(1):61 [PMID: 31590664]
  19. Bioinspir Biomim. 2017 Dec 28;13(1):016013 [PMID: 29283112]
  20. Cardiovasc Eng Technol. 2021 Aug;12(4):438-453 [PMID: 33829405]
  21. J Magn Reson Imaging. 2001 May;13(5):769-80 [PMID: 11329200]
  22. Nat Commun. 2019 Jul 15;10(1):3111 [PMID: 31308376]
  23. Magn Reson Med. 2022 Mar;87(3):1231-1249 [PMID: 34786764]
  24. IEEE Trans Med Imaging. 2018 Mar;37(3):755-766 [PMID: 28613164]
  25. Comput Biol Med. 2021 Aug;135:104581 [PMID: 34174756]
  26. Magn Reson Med. 2021 Feb;85(2):721-733 [PMID: 32754969]
  27. J Magn Reson Imaging. 2011 Apr;33(4):839-46 [PMID: 21448948]
  28. J Magn Reson Imaging. 2018 Oct;48(4):1147-1158 [PMID: 29638024]
  29. Sci Rep. 2019 Dec 11;9(1):18794 [PMID: 31827204]
  30. J Biomech. 2019 Sep 20;94:13-21 [PMID: 31326119]
  31. J Biomech Eng. 2011 May;133(5):051001 [PMID: 21599092]
  32. J Magn Reson Imaging. 1997 Mar-Apr;7(2):339-46 [PMID: 9090588]
  33. Med Image Anal. 2020 Feb;60:101627 [PMID: 31865280]
  34. APL Bioeng. 2018 Mar 16;2(2):026101 [PMID: 31069298]
  35. Biomech Model Mechanobiol. 2019 Dec;18(6):1867-1881 [PMID: 31218576]
  36. J Thorac Dis. 2018 Sep;10(9):5584-5594 [PMID: 30416809]
  37. Magn Reson Imaging. 2016 Jul;34(6):715-723 [PMID: 26968139]
  38. IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21 [PMID: 28055930]
  39. Cardiovasc Eng Technol. 2015 Sep;6(3):281-93 [PMID: 26577361]
  40. Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H163-70 [PMID: 19429823]
  41. Biorheology. 2002;39(3-4):425-9 [PMID: 12122262]
  42. Heart Vessels. 2017 Aug;32(8):1032-1044 [PMID: 28444501]
  43. PLoS One. 2021 Mar 26;16(3):e0248816 [PMID: 33770130]
  44. Magn Reson Med. 2020 Oct;84(4):2231-2245 [PMID: 32270549]
  45. Sci Rep. 2017 Apr 20;7:46618 [PMID: 28425452]
  46. Int J Numer Method Biomed Eng. 2018 Nov;34(11):e3134 [PMID: 30062843]
  47. Z Med Phys. 2019 May;29(2):102-127 [PMID: 30553609]

Grants

  1. CR23I3_166485/Swiss National Science Foundation

MeSH Term

Bayes Theorem
Blood Flow Velocity
Constriction, Pathologic
Humans
Imaging, Three-Dimensional
Magnetic Resonance Imaging

Word Cloud

Created with Highcharts 10.0.0flowMRI4Ddataturbulentaortictime5 mmpatient-specificpairedgroundtruthinferenceusingmultipointresolutionsspatialaveragingstenotickineticenergy12downstreamproposesynthesizedatasetssupporttrainingmethodsTurbulentbloodcomputedbasedNavier-Stokesequationsmovingdomainsrealisticboundaryconditionsshapeswalldisplacementsinletvelocitiesobtainedpatientsimulatedsyntheticgenerateduser-definedspatiotemporalreconstructedBayesianapproachcomputetime-varyingvelocityturbulencemapssynthesisfixedhypotheticalscanbudgetassumedaccordinglychangesresolutionresultcorrespondingscalingsignal-to-noiseratiosSNRworkfocusedquantificationTKEresultsshow55 msencounteredpracticepeaktotal507590%stenosisoverestimatedmuch231514%382423%demonstratingimportanceassessingaccuracyprecisionexamsSynthesisvalves

Similar Articles

Cited By (4)