The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery.

Ly T S Nguyen, Douglas N Robinson
Author Information
  1. Ly T S Nguyen: Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD. ORCID
  2. Douglas N Robinson: Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD. ORCID

Abstract

Cellular functions, such as division and migration, require cells to undergo robust shape changes. Through their contractility machinery, cells also sense, respond, and adapt to their physical surroundings. In the cytoplasm, the contractility machinery organizes into higher order assemblies termed contractility kits (CKs). Using Dictyostelium discoideum, we previously identified Discoidin I (DscI), a classic secreted lectin, as a CK component through its physical interactions with the actin crosslinker Cortexillin I (CortI) and the scaffolding protein IQGAP2. Here, we find that DscI ensures robust cytokinesis through regulating intracellular components of the contractile machinery. Specifically, DscI is necessary for normal cytokinesis, cortical tension, membrane-cortex connections, and cortical distribution and mechanoresponsiveness of CortI. The dscI deletion mutants also have complex genetic epistatic relationships with CK components, acting as a genetic suppressor of cortI and iqgap1, but as an enhancer of iqgap2. This work underscores the fact that proteins like DiscI contribute in diverse ways to the activities necessary for optimal cell function.

References

  1. PLoS One. 2010 Nov 10;5(11):e15440 [PMID: 21085675]
  2. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7186-91 [PMID: 15870188]
  3. Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15550-15559 [PMID: 31235578]
  4. Am J Physiol Lung Cell Mol Physiol. 2017 Sep 1;313(3):L581-L591 [PMID: 28642260]
  5. EMBO J. 2001 Jul 16;20(14):3705-15 [PMID: 11447112]
  6. Sci Adv. 2016 Apr 22;2(4):e1501337 [PMID: 27152338]
  7. J Cell Biol. 2006 Nov 6;175(3):477-90 [PMID: 17088428]
  8. J Cell Biol. 1985 Apr;100(4):1024-30 [PMID: 3980577]
  9. Proteomics. 2015 Oct;15(19):3315-9 [PMID: 26152465]
  10. Sci Rep. 2018 May 31;8(1):8471 [PMID: 29855514]
  11. Semin Cell Dev Biol. 2016 May;53:39-44 [PMID: 26481973]
  12. Differentiation. 1987;34(2):79-87 [PMID: 3622952]
  13. J Cell Sci. 2021 Jan 13;134(1): [PMID: 33298514]
  14. Protein Sci. 1998 Jul;7(7):1626-31 [PMID: 9684896]
  15. Curr Biol. 2005 Apr 26;15(8):724-31 [PMID: 15854904]
  16. Nat Methods. 2006 Feb;3(2):83-9 [PMID: 16432516]
  17. Curr Opin Struct Biol. 2004 Oct;14(5):617-30 [PMID: 15465324]
  18. Curr Biol. 2010 Nov 9;20(21):1881-9 [PMID: 20951045]
  19. Traffic. 2008 Dec;9(12):2089-99 [PMID: 18939956]
  20. EMBO J. 1999 Oct 1;18(19):5274-84 [PMID: 10508161]
  21. Biophys J. 2022 Oct 4;121(19):3573-3585 [PMID: 35505610]
  22. Physiol Rev. 2014 Jan;94(1):235-63 [PMID: 24382887]
  23. J Cell Biol. 1985 Jun;100(6):1825-33 [PMID: 2581974]
  24. Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3117-25 [PMID: 25970206]
  25. Biochem Biophys Res Commun. 2018 May 23;499(4):783-789 [PMID: 29614268]
  26. EMBO J. 2002 Sep 2;21(17):4539-49 [PMID: 12198156]
  27. Mol Cell Biol. 1996 Sep;16(9):4869-78 [PMID: 8756646]
  28. EMBO J. 2004 Apr 7;23(7):1536-46 [PMID: 15014435]
  29. J Biol Chem. 1994 Jul 22;269(29):18773-80 [PMID: 8034630]
  30. Biostat Bioinforma Biomath. 2013 Aug;3(3):71-85 [PMID: 25558171]
  31. Cell. 1984 Dec;39(3 Pt 2):557-64 [PMID: 6509552]
  32. EMBO J. 1999 Feb 1;18(3):586-94 [PMID: 9927418]
  33. J Biol Chem. 2018 May 4;293(18):6751-6761 [PMID: 29549125]
  34. Mol Biol Cell. 2012 Apr;23(8):1510-23 [PMID: 22379107]
  35. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2554-7 [PMID: 4517669]
  36. J Cell Biol. 2019 Mar 4;218(3):895-908 [PMID: 30655296]
  37. Exp Cell Res. 1993 Jan;204(1):61-72 [PMID: 8416797]
  38. Methods Mol Biol. 2013;983:367-82 [PMID: 23494318]
  39. J Biol Chem. 1994 Aug 19;269(33):20807-10 [PMID: 8063692]
  40. Mol Biol Cell. 2014 Dec 15;25(25):4150-65 [PMID: 25318674]
  41. Biophys J. 2012 Jan 18;102(2):238-47 [PMID: 22339860]
  42. J Cell Sci. 1997 Jan;110 ( Pt 2):123-37 [PMID: 9044043]
  43. Differentiation. 1995 Dec;59(5):289-97 [PMID: 8882814]
  44. PLoS One. 2012;7(9):e44400 [PMID: 22973445]
  45. Cell Struct Funct. 2000 Feb;25(1):1-10 [PMID: 10791889]
  46. Science. 1956 May 11;123(3202):848 [PMID: 13324101]
  47. Glycoconj J. 2004;19(7-9):433-40 [PMID: 14758066]
  48. J Cell Biol. 1997 May 19;137(4):891-8 [PMID: 9151691]
  49. Differentiation. 1992 Nov;51(3):149-61 [PMID: 1334012]
  50. Pathog Dis. 2017 Jul 31;75(5): [PMID: 28449072]
  51. J Cell Sci. 2021 Dec 1;134(23): [PMID: 34730180]
  52. Sci Rep. 2015 Sep 15;5:14068 [PMID: 26369831]
  53. Mol Biol Cell. 2010 Jun 1;21(11):1810-24 [PMID: 20375144]
  54. Hoppe Seylers Z Physiol Chem. 1984 Mar;365(3):283-8 [PMID: 6202616]
  55. J Cell Biol. 2000 Aug 21;150(4):823-38 [PMID: 10953006]
  56. Curr Biol. 2009 Sep 15;19(17):1421-8 [PMID: 19646871]
  57. Cell Struct Funct. 2001 Dec;26(6):571-5 [PMID: 11942611]
  58. J Cell Sci. 2019 Sep 2;132(17): [PMID: 31477578]
  59. J Cell Biol. 1980 Dec;87(3 Pt 1):703-7 [PMID: 6970200]
  60. Biophys J. 1998 Jan;74(1):514-22 [PMID: 9449351]
  61. J Mol Biol. 2010 Jul 16;400(3):540-54 [PMID: 20580724]
  62. Tissue Eng Part B Rev. 2017 Oct;23(5):494-504 [PMID: 28376649]
  63. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2162-6 [PMID: 7048311]
  64. Cytoskeleton (Hoboken). 2012 Oct;69(10):700-9 [PMID: 22761196]
  65. J Cell Sci. 2019 Jan 16;132(2): [PMID: 30559246]
  66. Biochim Biophys Acta. 2007 Sep;1774(9):1069-78 [PMID: 17702679]
  67. Front Cell Neurosci. 2019 Mar 14;13:90 [PMID: 30930748]
  68. Curr Biol. 2015 Mar 2;25(5):663-70 [PMID: 25702575]
  69. Methods Cell Biol. 2017;137:307-322 [PMID: 28065313]
  70. Cell. 1983 Sep;34(2):467-75 [PMID: 6616620]
  71. Mol Biol Cell. 2016 Apr 15;27(8):1262-71 [PMID: 26912787]
  72. ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28168-28179 [PMID: 28795554]
  73. Science. 2014 Jan 17;343(6168):309-13 [PMID: 24436421]
  74. iScience. 2019 Dec 20;22:240-255 [PMID: 31786520]
  75. Annu Rev Biochem. 2019 Jun 20;88:661-689 [PMID: 30649923]
  76. Curr Biol. 2016 Jun 6;26(11):1473-1479 [PMID: 27185555]
  77. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):209-31 [PMID: 12223271]
  78. Curr Biol. 2006 Oct 10;16(19):1962-7 [PMID: 17027494]
  79. Cancer Res. 2019 Sep 15;79(18):4665-4678 [PMID: 31358530]
  80. Elife. 2021 Aug 10;10: [PMID: 34374341]
  81. Front Cell Dev Biol. 2020 Jun 18;8:441 [PMID: 32626704]
  82. F1000Res. 2018 Nov 26;7: [PMID: 30542616]
  83. J Cell Biol. 2019 Feb 4;218(2):445-454 [PMID: 30541746]
  84. J Cell Sci. 2018 May 1;131(9): [PMID: 29717004]
  85. J Biol Chem. 1975 Oct 10;250(19):7714-21 [PMID: 1236849]
  86. Genes Dev. 1992 Mar;6(3):390-400 [PMID: 1547939]
  87. EMBO J. 1996 Jun 17;15(12):2997-3005 [PMID: 8670801]
  88. Dev Cell. 2012 Sep 11;23(3):533-46 [PMID: 22902739]

Grants

  1. R01 GM066817/NIGMS NIH HHS
  2. R01 GM66817/NIH HHS

MeSH Term

Actins
Cytoplasm
Dictyostelium
Discoidins
Lectins
Microfilament Proteins
Protozoan Proteins
ras GTPase-Activating Proteins

Chemicals

Actins
Discoidins
Lectins
Microfilament Proteins
Protozoan Proteins
ctxA protein, Dictyostelium discoideum
ras GTPase-Activating Proteins

Word Cloud

Created with Highcharts 10.0.0machinerycontractilityDscIcellsrobustalsophysicalcytoplasmDiscoidinlectinCKCortIcytokinesiscomponentscontractilenecessarycorticalgeneticCellularfunctionsdivisionmigrationrequireundergoshapechangessenserespondadaptsurroundingsorganizeshigherorderassembliestermedkitsCKsUsingDictyosteliumdiscoideumpreviouslyidentifiedclassicsecretedcomponentinteractionsactincrosslinkerCortexillinscaffoldingproteinIQGAP2findensuresregulatingintracellularSpecificallynormaltensionmembrane-cortexconnectionsdistributionmechanoresponsivenessdscIdeletionmutantscomplexepistaticrelationshipsactingsuppressorcortIiqgap1enhanceriqgap2workunderscoresfactproteinslikeDiscIcontributediversewaysactivitiesoptimalcellfunctionactshelpassemble

Similar Articles

Cited By (1)