SIRT3 expression alleviates microglia activation‑induced dopaminergic neuron injury through the mitochondrial pathway.

De-Qi Jiang, Qing-Min Zang, Li-Lin Jiang, Cheng-Shu Lu, Shi-Hua Zhao, Lan-Cheng Xu
Author Information
  1. De-Qi Jiang: College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi Zhuang Autonomous Region 537000, P.R. China.
  2. Qing-Min Zang: College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi Zhuang Autonomous Region 537000, P.R. China.
  3. Li-Lin Jiang: College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi Zhuang Autonomous Region 537000, P.R. China.
  4. Cheng-Shu Lu: College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi Zhuang Autonomous Region 537000, P.R. China.
  5. Shi-Hua Zhao: College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi Zhuang Autonomous Region 537000, P.R. China.
  6. Lan-Cheng Xu: College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi Zhuang Autonomous Region 537000, P.R. China.

Abstract

The mitochondrial protein sirtuin 3 (SIRT3) can counteract cell damage caused by oxidative stress and inflammation, and contribute to cell survival primarily by improving mitochondrial function. However, the effects of SIRT3 in dopaminergic neuronal cells (DACs) remain unclear. In our previous studies, microglia activation-associated cytotoxicity was observed to promote the apoptosis of DACs, along with the decrease of SIRT3 expression. The aim of the present study was to explore the potential neuroprotective effect of SIRT3 expression against dopaminergic neuron injury caused by microglia activation, and clarify its possible mechanisms. SIRT3 overexpression in DACs reduced the production of intracellular reactive oxygen species (ROS), cell apoptosis rate, mitochondrial membrane potential (ΔΨm) depolarization, opening of mitochondrial permeability transition pore (mPTP) and cyclophilin D (CypD) protein level, and promoted cell cycle progression. However, SIRT3 siRNA-mediated knockdown further aggravated microglia activation-mediated cytotoxicity, including ROS accumulation, increased cell apoptosis and mPTP opening, elevated the CypD level, enhanced mitochondrial ΔΨm depolarization, concomitant to cell cycle arrest at G/G phase. The mechanisms of SIRT3 mitigated microglia activation-induced DAC dysfunction, which included decreased mPTP opening and Bax/Bcl-2 ratio, inhibition of mitochondrial cytochrome release to the cytoplasm, reduced caspase-3/9 activity, increased LC3II/LC3I and beclin-1 protein expression levels, and decreased nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing protein 3 (NLRP3), caspase-1, IL-1β and IL-18 protein expression. In conclusion, these results indicated that SIRT3 expression attenuated cell damage caused by microglia activation through the mitochondrial apoptosis pathway in DACs. The mitophagy-NLRP3 inflammasome pathway may also be associated with this neuroprotection. These findings may provide new intervention targets for the survival of dopaminergic neurons and the prevention and treatment of Parkinson's disease.

Keywords

References

  1. J Chem Neuroanat. 2019 Jan;95:43-53 [PMID: 29129747]
  2. Int J Mol Sci. 2015 Sep 01;16(9):20704-30 [PMID: 26340618]
  3. Exp Eye Res. 2019 Apr;181:223-231 [PMID: 30794763]
  4. J Cell Physiol. 2015 Jul;230(7):1567-79 [PMID: 25535911]
  5. Front Neurosci. 2018 Feb 27;12:116 [PMID: 29535606]
  6. J Am Heart Assoc. 2017 Sep 4;6(9): [PMID: 28871042]
  7. Ageing Res Rev. 2020 Sep;62:101107 [PMID: 32535274]
  8. Int J Mol Sci. 2021 May 07;22(9): [PMID: 34066949]
  9. Int J Mol Sci. 2021 Nov 08;22(21): [PMID: 34769517]
  10. Acta Neurol Taiwan. 2021 Sep 30;30(3):83-93 [PMID: 34841503]
  11. Bioact Mater. 2021 Mar 18;6(10):3343-3357 [PMID: 33817415]
  12. Oxid Med Cell Longev. 2021 Jan 8;2021:8864395 [PMID: 33505591]
  13. FASEB J. 2019 Dec;33(12):14118-14128 [PMID: 31647884]
  14. FEBS Lett. 2018 Mar;592(5):728-742 [PMID: 29281123]
  15. Aging Dis. 2018 Apr 1;9(2):273-286 [PMID: 29896416]
  16. Neurochem Res. 2015 Mar;40(3):600-8 [PMID: 25555707]
  17. Biomed Pharmacother. 2020 Dec;132:110928 [PMID: 33128944]
  18. Redox Biol. 2021 May;41:101915 [PMID: 33662874]
  19. Chin J Integr Med. 2021 May;27(5):336-344 [PMID: 33420900]
  20. Brain. 2015 Oct;138(Pt 10):3030-47 [PMID: 26133660]
  21. Biosci Trends. 2019 Jan 22;12(6):605-612 [PMID: 30584213]
  22. Free Radic Biol Med. 2017 Jul;108:345-353 [PMID: 28396174]
  23. J Neural Transm (Vienna). 2019 May;126(5):559-568 [PMID: 31004314]
  24. Chem Pharm Bull (Tokyo). 2020;68(8):717-725 [PMID: 32741912]
  25. Antioxid Redox Signal. 2016 Feb 20;24(6):312-28 [PMID: 26421366]
  26. Phytomedicine. 2020 Oct;77:153281 [PMID: 32707370]
  27. J Neurosci. 2020 Jan 15;40(3):694-709 [PMID: 31818974]
  28. Front Cell Neurosci. 2017 Jan 31;11:7 [PMID: 28197079]
  29. Exp Neurobiol. 2021 Oct 31;30(5):341-355 [PMID: 34737239]
  30. Int J Biol Macromol. 2021 Apr 1;175:351-360 [PMID: 33556400]
  31. Biochem Biophys Res Commun. 2017 Mar 18;484(4):767-773 [PMID: 28161643]
  32. Oxid Med Cell Longev. 2020 Feb 13;2020:7698560 [PMID: 32104538]
  33. Neural Regen Res. 2020 Nov;15(11):2143-2153 [PMID: 32394973]
  34. Neurobiol Aging. 2009 Oct;30(10):1587-600 [PMID: 18406011]
  35. Biochim Biophys Acta Mol Basis Dis. 2017 Aug;1863(8):1973-1983 [PMID: 27794418]
  36. Nutr Neurosci. 2021 Feb;24(2):90-101 [PMID: 30929586]
  37. Neurochem Int. 2021 Sep;148:105094 [PMID: 34097990]
  38. Adv Clin Exp Med. 2021 Feb;30(2):139-146 [PMID: 33650328]
  39. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  40. J Food Biochem. 2022 Mar;46(3):e13820 [PMID: 34132394]
  41. J Cell Physiol. 2019 Dec;234(12):22172-22182 [PMID: 31062359]
  42. Epilepsy Res. 2021 Oct;176:106722 [PMID: 34273723]
  43. Front Pharmacol. 2020 Oct 08;11:577062 [PMID: 33132912]
  44. Neuroscience. 2021 Aug 1;468:68-74 [PMID: 34119577]
  45. Mol Neurodegener. 2020 Jan 13;15(1):5 [PMID: 31931835]
  46. Br J Pharmacol. 2020 Oct;177(20):4645-4665 [PMID: 32726464]
  47. Biochim Biophys Acta Mol Basis Dis. 2018 Mar;1864(3):764-777 [PMID: 29277324]
  48. Free Radic Biol Med. 2021 Feb 1;163:163-179 [PMID: 33285261]
  49. Int J Mol Sci. 2021 Apr 28;22(9): [PMID: 33925154]

Word Cloud

Created with Highcharts 10.0.0SIRT3mitochondrialcellmicrogliaexpressionproteindopaminergicapoptosisDACs3causedactivationopeningmPTPpathwaysirtuindamagesurvivalHoweverneuronalcytotoxicitypotentialneuroninjurymechanismsreducedROSΔΨmdepolarizationCypDlevelcycleincreaseddecreasedmaycancounteractoxidativestressinflammationcontributeprimarilyimprovingfunctioneffectscellsremainunclearpreviousstudiesactivation-associatedobservedpromotealongdecreaseaimpresentstudyexploreneuroprotectiveeffectclarifypossibleoverexpressionproductionintracellularreactiveoxygenspeciesratemembranepermeabilitytransitionporecyclophilinDpromotedprogressionsiRNA-mediatedknockdownaggravatedactivation-mediatedincludingaccumulationelevatedenhancedconcomitantarrestG/Gphasemitigatedactivation-inducedDACdysfunctionincludedBax/Bcl-2ratioinhibitioncytochromereleasecytoplasmcaspase-3/9activityLC3II/LC3Ibeclin-1levelsnucleotide-bindingoligomerizationdomainleucinerichrepeatpyrindomain-containingNLRP3caspase-1IL-1βIL-18conclusionresultsindicatedattenuatedmitophagy-NLRP3inflammasomealsoassociatedneuroprotectionfindingsprovidenewinterventiontargetsneuronspreventiontreatmentParkinson'sdiseasealleviatesactivation‑inducedmitophagy

Similar Articles

Cited By