Escape response kinematics in two species of tropical shark: short escape latencies and high turning performance.

José E Trujillo, Ian Bouyoucos, William J Rayment, Paolo Domenici, Serge Planes, Jodie L Rummer, Bridie J M Allan
Author Information
  1. José E Trujillo: Department of Marine Science, University of Otago, Dunedin 9016, New Zealand. ORCID
  2. Ian Bouyoucos: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4814, Australia. ORCID
  3. William J Rayment: Department of Marine Science, University of Otago, Dunedin 9016, New Zealand. ORCID
  4. Paolo Domenici: CNR-IAS, Località Sa Mardini, 09170 Torregrande, Oristano, Italy. ORCID
  5. Serge Planes: PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100 Perpignan, France. ORCID
  6. Jodie L Rummer: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4814, Australia. ORCID
  7. Bridie J M Allan: Department of Marine Science, University of Otago, Dunedin 9016, New Zealand. ORCID

Abstract

Accelerative manoeuvres, such as fast-starts, are crucial for fish to avoid predation. Escape responses are fast-starts that include fundamental survival traits for prey that experience high predation pressure. However, no previous study has assessed escape performance in neonate tropical sharks. We quantitatively evaluated vulnerability traits of neonate tropical sharks by testing predictions on their fast-start escape performance. We predicted (1) high manoeuvrability, given their high flexibility, but (2) low propulsive locomotion owing to the drag costs associated with pectoral fin extension during escape responses. Further, based on previous work on dogfish, Squalus suckleyi, we predicted (3) long reaction times (as latencies longer than teleosts, >20 ms). We used two-dimensional, high-speed videography analysis of mechano-acoustically stimulated neonate blacktip reef shark, Carcharhinus melanopterus (n=12), and sicklefin lemon shark, Negaprion acutidens (n=8). Both species performed a characteristic C-start double-bend response (i.e. two body bends), but single-bend responses were only observed in N. acutidens. As predicted, neonate sharks showed high manoeuvrability with high turning rates and tight turning radii (3-11% of body length) but low propulsive performance (i.e. speed, acceleration and velocity) when compared with similar-sized teleosts and S. suckleyi. Contrary to expectations, escape latencies were <20 ms in both species, suggesting that the neurophysiological system of sharks when reacting to a predatory attack may not be limited to long response times. These results provide a quantitative assessment of survival traits in neonate tropical sharks that will be crucial for future studies that consider the vulnerability of these sharks to predation.

Keywords

References

  1. Biol Lett. 2010 Jun 23;6(3):414-7 [PMID: 20089537]
  2. Conserv Physiol. 2019 Nov 07;7(1):coz078 [PMID: 31723432]
  3. J Exp Biol. 2000 Aug;203(Pt 15):2261-78 [PMID: 10887066]
  4. J Morphol. 2001 Sep;249(3):195-209 [PMID: 11517464]
  5. Zoology (Jena). 2003;106(1):19-28 [PMID: 16351888]
  6. J Fish Biol. 2015 Feb;86(2):605-614 [PMID: 25605367]
  7. Biol Open. 2019 Jan 17;8(1): [PMID: 30584070]
  8. J Exp Zool A Ecol Genet Physiol. 2010 Feb 1;313(2):59-79 [PMID: 20073047]
  9. Conserv Physiol. 2015 Dec 21;3(1):cov062 [PMID: 27293741]
  10. Sci Total Environ. 2021 Aug 15;782:146854 [PMID: 33853007]
  11. Integr Org Biol. 2019 Jun 22;1(1):obz014 [PMID: 33791529]
  12. Conserv Physiol. 2015 Mar 16;3(1):cov011 [PMID: 27293696]
  13. J Theor Biol. 1974 Oct;47(2):333-50 [PMID: 4437191]
  14. Sci Rep. 2017 Aug 9;7(1):7641 [PMID: 28794497]
  15. Brain Res. 1990 May 28;517(1-2):88-98 [PMID: 2376010]
  16. Neuron. 1999 Jun;23(2):325-35 [PMID: 10399938]
  17. Curr Biol. 2017 Sep 25;27(18):2751-2762.e6 [PMID: 28889979]
  18. J Exp Biol. 2019 Sep 18;222(Pt 18): [PMID: 31534015]
  19. J Exp Biol. 2009 Sep 15;212(18):2925-33 [PMID: 19717674]
  20. Integr Comp Biol. 2010 Dec;50(6):1120-39 [PMID: 21558263]
  21. J Exp Biol. 1977 Feb;66(1):65-81 [PMID: 870603]
  22. J Exp Biol. 2021 Feb 4;224(Pt 3): [PMID: 33431597]
  23. J Exp Biol. 1997;200(Pt 8):1165-78 [PMID: 9319004]
  24. Zoology (Jena). 2011 Dec;114(6):348-59 [PMID: 21982409]
  25. F1000Res. 2017 Sep 27;6:1767 [PMID: 29043073]
  26. J Morphol. 2020 Nov;281(11):1501-1516 [PMID: 32965713]
  27. Can J Zool. 1980 Aug;58(8):1462-9 [PMID: 7427833]
  28. J Exp Biol. 2015 Feb 1;218(Pt 3):433-9 [PMID: 25653423]
  29. J Anim Ecol. 2013 Sep;82(5):1031-41 [PMID: 23869526]
  30. Proc Biol Sci. 2014 Jan 08;281(1777):20132179 [PMID: 24403326]
  31. J Fish Biol. 2019 May;94(5):789-797 [PMID: 30883741]
  32. J Exp Biol. 1999 Nov;202 Pt 22:3057-67 [PMID: 10539954]
  33. Comp Biochem Physiol A Mol Integr Physiol. 2001 Dec;131(1):169-82 [PMID: 11733175]
  34. Proc Biol Sci. 2017 Jun 28;284(1857): [PMID: 28659450]
  35. J Exp Biol. 1977 Feb;66(1):243-54 [PMID: 858992]
  36. J Exp Biol. 2004 Jun;207(Pt 13):2339-49 [PMID: 15159438]
  37. J Exp Biol. 2011 Sep 15;214(Pt 18):3102-10 [PMID: 21865523]
  38. Philos Trans R Soc Lond B Biol Sci. 2007 Nov 29;362(1487):2105-21 [PMID: 17472921]
  39. Biorheology. 1973 Sep;10(3):343-50 [PMID: 4772008]
  40. J Exp Biol. 2011 Aug 1;214(Pt 15):2463-73 [PMID: 21753039]
  41. J Exp Biol. 1976 Aug;65(1):157-77 [PMID: 993700]
  42. Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3254-3260 [PMID: 32001507]
  43. Conserv Physiol. 2018 Sep 18;6(1):coy053 [PMID: 30254751]
  44. Prog Neurobiol. 2001 Mar;63(4):467-85 [PMID: 11163687]
  45. Zoology (Jena). 2014 Dec;117(6):377-82 [PMID: 25041843]

Grants

  1. /University of Otago Doctoral Scholarship
  2. /Journal of Experimental Biology Travelling Fellowship
  3. /Australian Research Council Centre of Excellence for Coral Reef Studies
  4. /CRIOBE
  5. /University of Otago
  6. /Company of Biologists
  7. /Australian Research Council
  8. /Centre de Recherches Insulaires et Observatoire de l'Environnement

MeSH Term

Animals
Sharks
Biomechanical Phenomena
Predatory Behavior
Locomotion
Dogfish