Visualization of a Limonene Synthesis Metabolon Inside Living Bacteria by Hyperspectral SRS Microscopy.
Jing Zhang, Jonghyeon Shin, Nathan Tague, Haonan Lin, Meng Zhang, Xiaowei Ge, Wilson Wong, Mary J Dunlop, Ji-Xin Cheng
Author Information
Jing Zhang: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Jonghyeon Shin: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Nathan Tague: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Haonan Lin: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Meng Zhang: Photonics Center, Boston University, Boston, MA, 02215, USA.
Xiaowei Ge: Photonics Center, Boston University, Boston, MA, 02215, USA.
Wilson Wong: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Mary J Dunlop: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. ORCID
Ji-Xin Cheng: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. ORCID
中文译文
English
Monitoring biosynthesis activity at single-cell level is key to metabolic engineering but is still difficult to achieve in a label-free manner. Using hyperspectral stimulated Raman scattering imaging in the 670-900 cm region, localized limonene synthesis are visualized inside engineered Escherichia coli . The colocalization of limonene and GFP-fused limonene synthase is confirmed by co-registered stimulated Raman scattering and two-photon fluorescence images. The finding suggests a limonene synthesis metabolon with a polar distribution inside the cells. This finding expands the knowledge of de novo limonene biosynthesis in engineered bacteria and highlights the potential of SRS chemical imaging in metabolic engineering research.
J Chem Phys. 2020 May 7;152(17):174201
[PMID: 32384848 ]
ACS Nano. 2019 Feb 26;13(2):1403-1411
[PMID: 30724079 ]
Nat Commun. 2018 May 30;9(1):2136
[PMID: 29849027 ]
Biosci Rep. 2018 Nov 13;38(6):
[PMID: 30287506 ]
Analyst. 2019 Jan 28;144(3):901-912
[PMID: 30207333 ]
Bioresour Technol. 2020 Mar;300:122666
[PMID: 31901556 ]
Chem Biodivers. 2019 Dec;16(12):e1900434
[PMID: 31587473 ]
J Theor Biol. 1991 Sep 7;152(1):135-41
[PMID: 1753758 ]
Chem Commun (Camb). 2014 Dec 18;50(97):15288-96
[PMID: 25341412 ]
J Exp Bot. 2014 May;65(8):1947-54
[PMID: 24591054 ]
Biotechnol Adv. 2020 Nov 15;44:107628
[PMID: 32882371 ]
Adv Sci (Weinh). 2021 Feb 08;8(9):2003136
[PMID: 33977045 ]
Biotechnol Adv. 2011 Nov-Dec;29(6):715-25
[PMID: 21672618 ]
ACS Synth Biol. 2014 Jul 18;3(7):466-75
[PMID: 24679043 ]
Nat Commun. 2022 Jan 27;13(1):541
[PMID: 35087023 ]
Cell Chem Biol. 2019 Apr 18;26(4):482-492.e7
[PMID: 30686758 ]
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3076-81
[PMID: 18287048 ]
Nat Methods. 2019 Dec;16(12):1226-1232
[PMID: 31570887 ]
Nat Chem. 2016 Apr;8(4):299-309
[PMID: 27001725 ]
Sci Adv. 2021 Jan 6;7(2):
[PMID: 33523971 ]
Mol Cell. 2021 Sep 16;81(18):3775-3785
[PMID: 34547238 ]
Biochim Biophys Acta. 2012 Nov;1818(11):2687-706
[PMID: 22705263 ]
Adv Sci (Weinh). 2022 Nov;9(32):e2203887
[PMID: 36169112 ]
Appl Environ Microbiol. 2018 Apr 2;84(8):
[PMID: 29427427 ]
Appl Environ Microbiol. 2022 Feb 8;88(3):e0116521
[PMID: 34818099 ]
Nat Methods. 2019 Sep;16(9):830-842
[PMID: 31471618 ]
ACS Synth Biol. 2018 Mar 16;7(3):774-781
[PMID: 29439563 ]
Metab Eng. 2013 Sep;19:33-41
[PMID: 23727191 ]
Trends Biochem Sci. 2017 Feb;42(2):141-154
[PMID: 28029518 ]
Nat Commun. 2021 May 24;12(1):3052
[PMID: 34031374 ]
Cancer Commun (Lond). 2021 Jun;41(6):439-441
[PMID: 33939322 ]
PNAS Nexus. 2022 Mar 02;1(1):pgab007
[PMID: 36712793 ]
Nat Photonics. 2019 Jun;13(6):412-417
[PMID: 32607124 ]
Nat Commun. 2020 Sep 24;11(1):4830
[PMID: 32973134 ]
Metab Eng. 2011 Jan;13(1):18-27
[PMID: 20933603 ]
Anal Chem. 2018 Sep 4;90(17):10249-10255
[PMID: 30070837 ]
J Phys Chem Lett. 2020 Oct 15;11(20):8573-8578
[PMID: 32914982 ]
iScience. 2022 Feb 17;25(3):103936
[PMID: 35252821 ]
Anal Chem. 2021 Nov 30;93(47):15703-15711
[PMID: 34787995 ]
Mol Syst Biol. 2011 May 10;7:487
[PMID: 21556065 ]
Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42
[PMID: 21209361 ]
Nat Mach Intell. 2021 Apr;3:306-315
[PMID: 34676358 ]
Science. 2016 Nov 18;354(6314):890-893
[PMID: 27856908 ]
Trends Cell Biol. 2012 Dec;22(12):662-70
[PMID: 22841504 ]
Anal Chem. 2021 Apr 20;93(15):6223-6231
[PMID: 33826297 ]
Science. 2015 Nov 27;350(6264):aaa8870
[PMID: 26612955 ]
Science. 2016 Feb 12;351(6274):733-7
[PMID: 26912862 ]
Science. 2020 Apr 17;368(6488):283-290
[PMID: 32299949 ]
Annu Rev Microbiol. 2013;67:417-35
[PMID: 23808335 ]
Nat Microbiol. 2019 Jun;4(6):1035-1048
[PMID: 30886359 ]
EMBO Rep. 2020 Aug 5;21(8):e50774
[PMID: 33438812 ]
Nat Protoc. 2011 Dec 15;7(1):80-8
[PMID: 22179594 ]
Appl Microbiol Biotechnol. 2016 Apr;100(7):2927-38
[PMID: 26915992 ]
Curr Opin Plant Biol. 2005 Jun;8(3):280-91
[PMID: 15860425 ]
DE-SC0019387/DOE
R35GM136223/DOE
R01EB032391/DOE
R35 GM136223/NIGMS NIH HHS
R01 EB032391/NIBIB NIH HHS
Microscopy
Limonene
Spectrum Analysis, Raman
Metabolic Engineering
Escherichia coli