Visualization of a Limonene Synthesis Metabolon Inside Living Bacteria by Hyperspectral SRS Microscopy.

Jing Zhang, Jonghyeon Shin, Nathan Tague, Haonan Lin, Meng Zhang, Xiaowei Ge, Wilson Wong, Mary J Dunlop, Ji-Xin Cheng
Author Information
  1. Jing Zhang: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
  2. Jonghyeon Shin: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
  3. Nathan Tague: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
  4. Haonan Lin: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
  5. Meng Zhang: Photonics Center, Boston University, Boston, MA, 02215, USA.
  6. Xiaowei Ge: Photonics Center, Boston University, Boston, MA, 02215, USA.
  7. Wilson Wong: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
  8. Mary J Dunlop: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. ORCID
  9. Ji-Xin Cheng: Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. ORCID

Abstract

Monitoring biosynthesis activity at single-cell level is key to metabolic engineering but is still difficult to achieve in a label-free manner. Using hyperspectral stimulated Raman scattering imaging in the 670-900 cm region, localized limonene synthesis are visualized inside engineered Escherichia coli. The colocalization of limonene and GFP-fused limonene synthase is confirmed by co-registered stimulated Raman scattering and two-photon fluorescence images. The finding suggests a limonene synthesis metabolon with a polar distribution inside the cells. This finding expands the knowledge of de novo limonene biosynthesis in engineered bacteria and highlights the potential of SRS chemical imaging in metabolic engineering research.

Keywords

References

  1. J Chem Phys. 2020 May 7;152(17):174201 [PMID: 32384848]
  2. ACS Nano. 2019 Feb 26;13(2):1403-1411 [PMID: 30724079]
  3. Nat Commun. 2018 May 30;9(1):2136 [PMID: 29849027]
  4. Biosci Rep. 2018 Nov 13;38(6): [PMID: 30287506]
  5. Analyst. 2019 Jan 28;144(3):901-912 [PMID: 30207333]
  6. Bioresour Technol. 2020 Mar;300:122666 [PMID: 31901556]
  7. Chem Biodivers. 2019 Dec;16(12):e1900434 [PMID: 31587473]
  8. J Theor Biol. 1991 Sep 7;152(1):135-41 [PMID: 1753758]
  9. Chem Commun (Camb). 2014 Dec 18;50(97):15288-96 [PMID: 25341412]
  10. J Exp Bot. 2014 May;65(8):1947-54 [PMID: 24591054]
  11. Biotechnol Adv. 2020 Nov 15;44:107628 [PMID: 32882371]
  12. Adv Sci (Weinh). 2021 Feb 08;8(9):2003136 [PMID: 33977045]
  13. Biotechnol Adv. 2011 Nov-Dec;29(6):715-25 [PMID: 21672618]
  14. ACS Synth Biol. 2014 Jul 18;3(7):466-75 [PMID: 24679043]
  15. Nat Commun. 2022 Jan 27;13(1):541 [PMID: 35087023]
  16. Cell Chem Biol. 2019 Apr 18;26(4):482-492.e7 [PMID: 30686758]
  17. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3076-81 [PMID: 18287048]
  18. Nat Methods. 2019 Dec;16(12):1226-1232 [PMID: 31570887]
  19. Nat Chem. 2016 Apr;8(4):299-309 [PMID: 27001725]
  20. Sci Adv. 2021 Jan 6;7(2): [PMID: 33523971]
  21. Mol Cell. 2021 Sep 16;81(18):3775-3785 [PMID: 34547238]
  22. Biochim Biophys Acta. 2012 Nov;1818(11):2687-706 [PMID: 22705263]
  23. Adv Sci (Weinh). 2022 Nov;9(32):e2203887 [PMID: 36169112]
  24. Appl Environ Microbiol. 2018 Apr 2;84(8): [PMID: 29427427]
  25. Appl Environ Microbiol. 2022 Feb 8;88(3):e0116521 [PMID: 34818099]
  26. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  27. ACS Synth Biol. 2018 Mar 16;7(3):774-781 [PMID: 29439563]
  28. Metab Eng. 2013 Sep;19:33-41 [PMID: 23727191]
  29. Trends Biochem Sci. 2017 Feb;42(2):141-154 [PMID: 28029518]
  30. Nat Commun. 2021 May 24;12(1):3052 [PMID: 34031374]
  31. Cancer Commun (Lond). 2021 Jun;41(6):439-441 [PMID: 33939322]
  32. PNAS Nexus. 2022 Mar 02;1(1):pgab007 [PMID: 36712793]
  33. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  34. Nat Commun. 2020 Sep 24;11(1):4830 [PMID: 32973134]
  35. Metab Eng. 2011 Jan;13(1):18-27 [PMID: 20933603]
  36. Anal Chem. 2018 Sep 4;90(17):10249-10255 [PMID: 30070837]
  37. J Phys Chem Lett. 2020 Oct 15;11(20):8573-8578 [PMID: 32914982]
  38. iScience. 2022 Feb 17;25(3):103936 [PMID: 35252821]
  39. Anal Chem. 2021 Nov 30;93(47):15703-15711 [PMID: 34787995]
  40. Mol Syst Biol. 2011 May 10;7:487 [PMID: 21556065]
  41. Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42 [PMID: 21209361]
  42. Nat Mach Intell. 2021 Apr;3:306-315 [PMID: 34676358]
  43. Science. 2016 Nov 18;354(6314):890-893 [PMID: 27856908]
  44. Trends Cell Biol. 2012 Dec;22(12):662-70 [PMID: 22841504]
  45. Anal Chem. 2021 Apr 20;93(15):6223-6231 [PMID: 33826297]
  46. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  47. Science. 2016 Feb 12;351(6274):733-7 [PMID: 26912862]
  48. Science. 2020 Apr 17;368(6488):283-290 [PMID: 32299949]
  49. Annu Rev Microbiol. 2013;67:417-35 [PMID: 23808335]
  50. Nat Microbiol. 2019 Jun;4(6):1035-1048 [PMID: 30886359]
  51. EMBO Rep. 2020 Aug 5;21(8):e50774 [PMID: 33438812]
  52. Nat Protoc. 2011 Dec 15;7(1):80-8 [PMID: 22179594]
  53. Appl Microbiol Biotechnol. 2016 Apr;100(7):2927-38 [PMID: 26915992]
  54. Curr Opin Plant Biol. 2005 Jun;8(3):280-91 [PMID: 15860425]

Grants

  1. DE-SC0019387/DOE
  2. R35GM136223/DOE
  3. R01EB032391/DOE
  4. R35 GM136223/NIGMS NIH HHS
  5. R01 EB032391/NIBIB NIH HHS

MeSH Term

Microscopy
Limonene
Spectrum Analysis, Raman
Metabolic Engineering
Escherichia coli

Chemicals

Limonene

Word Cloud

Created with Highcharts 10.0.0limonenemetabolicengineeringstimulatedRamanscatteringbiosynthesisimagingsynthesisinsideengineeredcolifindingSRSMonitoringactivitysingle-celllevelkeystilldifficultachievelabel-freemannerUsinghyperspectral670-900 cmregionlocalizedvisualizedEscherichiacolocalizationGFP-fusedsynthaseconfirmedco-registeredtwo-photonfluorescenceimagessuggestsmetabolonpolardistributioncellsexpandsknowledgedenovobacteriahighlightspotentialchemicalresearchVisualizationLimoneneSynthesisMetabolonInsideLivingBacteriaHyperspectralMicroscopyescherichia

Similar Articles

Cited By (7)