Synthetic evolution of herbicide resistance using a T7 RNAP-based random DNA base editor.

Haroon Butt, Jose Luis Moreno Ramirez, Magdy Mahfouz
Author Information
  1. Haroon Butt: Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. ORCID
  2. Jose Luis Moreno Ramirez: Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. ORCID
  3. Magdy Mahfouz: Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia Magdy.mahfouz@kaust.edu.sa. ORCID

Abstract

Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Here, we designed, built, and tested a chimeric fusion of T7 RNA Polymerase (RNAP) and deaminase to enable the localized sequence diversification of a target sequence of interest. We tested our T7 RNAP-DNA base editor in <i>Nicotiana benthamiana</i> transient assays to target a transgene expressing <i>GFP</i> under the control of the T7 promoter and observed C-to-T conversions. We then targeted the T7 promoter-driven <i>acetolactate synthase</i> sequence that had been stably integrated in the rice genome and generated C-to-T and G-to-A transitions. We used herbicide treatment as selection pressure for the evolution of the <i>acetolactate synthase</i> sequence, resulting in the enrichment of herbicide-responsive residues. We then validated these herbicide-responsive regions in the transgenic rice plants. Thus, our system could be used for the continuous synthetic evolution of gene functions to produce variants with improved herbicide resistance.

References

  1. Plant Mol Biol. 2007 May;64(1-2):219-24 [PMID: 17334827]
  2. Nat Chem Biol. 2014 Mar;10(3):175-7 [PMID: 24487693]
  3. Nucleic Acids Res. 2021 Apr 6;49(6):e32 [PMID: 33406230]
  4. Biotechnology (N Y). 1991 Nov;9(11):1073-7 [PMID: 1367624]
  5. Nat Rev Genet. 2018 Dec;19(12):770-788 [PMID: 30323312]
  6. Commun Biol. 2021 May 5;4(1):529 [PMID: 33953336]
  7. Nat Commun. 2021 Mar 11;12(1):1579 [PMID: 33707425]
  8. Nature. 2011 Apr 28;472(7344):499-503 [PMID: 21478873]
  9. Nat Commun. 2021 Jun 7;12(1):3326 [PMID: 34099656]
  10. Front Plant Sci. 2011 Sep 16;2:51 [PMID: 22645539]
  11. Nat Biotechnol. 2019 Jul;37(7):730-743 [PMID: 31209374]
  12. J Am Chem Soc. 2018 Sep 19;140(37):11560-11564 [PMID: 29991261]
  13. Plant J. 2007 Oct;52(1):157-66 [PMID: 17883686]
  14. Cell. 2018 Dec 13;175(7):1946-1957.e13 [PMID: 30415839]
  15. Nature. 2018 Aug;560(7717):248-252 [PMID: 30069054]
  16. Nat Methods. 2021 Apr;18(4):346-357 [PMID: 33828274]
  17. Nat Methods. 2016 Dec;13(12):1036-1042 [PMID: 27798611]
  18. Nat Rev Genet. 2001 Oct;2(10):815-22 [PMID: 11584298]
  19. Nat Protoc. 2008;3(5):824-34 [PMID: 18451790]
  20. Nat Biotechnol. 2020 Jul;38(7):875-882 [PMID: 31932727]
  21. Nat Rev Immunol. 2006 Aug;6(8):573-83 [PMID: 16868548]
  22. Nat Biotechnol. 2020 Feb;38(2):165-168 [PMID: 31844291]
  23. Synth Biol (Oxf). 2021 Sep 02;6(1):ysab025 [PMID: 34522785]
  24. Cell Res. 2008 Jan;18(1):27-47 [PMID: 18166975]
  25. Comput Struct Biotechnol J. 2020 Jun 25;18:1686-1694 [PMID: 32670508]
  26. Front Plant Sci. 2017 Aug 24;8:1441 [PMID: 28883826]
  27. Nat Commun. 2020 Dec 22;11(1):6436 [PMID: 33353963]
  28. Trends Plant Sci. 2019 Nov;24(11):999-1007 [PMID: 31604600]
  29. Mol Plant. 2020 Apr 6;13(4):565-572 [PMID: 32001363]
  30. Nat Rev Drug Discov. 2020 Dec;19(12):839-859 [PMID: 33077937]
  31. Genes (Basel). 2019 Aug 07;10(8): [PMID: 31394891]
  32. Nature. 2019 Dec;576(7785):149-157 [PMID: 31634902]
  33. Genome Res. 2017 Jan;27(1):38-52 [PMID: 27831498]
  34. Mol Biotechnol. 1997 Apr;7(2):189-95 [PMID: 9219234]
  35. Plant Biotechnol J. 2020 Dec;18(12):2370-2372 [PMID: 32415890]
  36. Nat Biotechnol. 2019 Jul;37(7):744-754 [PMID: 31209375]
  37. Nature. 2017 Nov 23;551(7681):464-471 [PMID: 29160308]
  38. Annu Rev Biochem. 2018 Jun 20;87:131-157 [PMID: 29494241]
  39. Trends Biotechnol. 2020 Mar;38(3):236-240 [PMID: 31477243]
  40. Science. 1985 Jun 14;228(4705):1315-7 [PMID: 4001944]
  41. Commun Biol. 2020 Jan 23;3(1):44 [PMID: 31974493]
  42. Oncogene. 2002 Dec 16;21(58):8935-48 [PMID: 12483510]
  43. DNA Repair (Amst). 2007 Apr 1;6(4):489-504 [PMID: 17116428]
  44. Nat Chem Biol. 2020 Jun;16(6):610-619 [PMID: 32444838]
  45. Nat Biotechnol. 2020 Jul;38(7):883-891 [PMID: 32433547]
  46. Biochem J. 2018 Jun 11;475(11):1955-1964 [PMID: 29891532]
  47. Science. 2020 Jul 31;369(6503):566-571 [PMID: 32732424]
  48. Plant Cell. 2014 Jan;26(1):151-63 [PMID: 24443519]
  49. Genome Biol. 2019 Apr 30;20(1):73 [PMID: 31036069]
  50. Sci China Life Sci. 2021 Oct;64(10):1624-1633 [PMID: 33165814]
  51. Nat Protoc. 2009;4(2):206-23 [PMID: 19180090]
  52. Nature. 2009 Aug 13;460(7257):894-898 [PMID: 19633652]
  53. Nat Biotechnol. 2020 Jul;38(7):865-869 [PMID: 32483365]
  54. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):E5726-E5735 [PMID: 29871954]

MeSH Term

Acetolactate Synthase
DNA
DNA-Directed RNA Polymerases
Herbicide Resistance
Herbicides
Oryza
Viral Proteins

Chemicals

Herbicides
Viral Proteins
DNA
Acetolactate Synthase
bacteriophage T7 RNA polymerase
DNA-Directed RNA Polymerases

Word Cloud

Created with Highcharts 10.0.0sequenceT7evolution<i>/i>herbicideSyntheticlocalizeddiversificationselectionpressureinterestplantstestedtargetbaseeditorC-to-Tacetolactatesynthase<riceusedherbicide-responsiveresistancedirectedviasimultaneousapplicationpromisingmethodproducingnewbeneficialallelesaffecttraitsdiversespecieshowevertechniquerarelyapplieddesignedbuiltchimericfusionRNAPolymeraseRNAPdeaminaseenableRNAP-DNANicotianabenthamiana<transientassaystransgeneexpressingGFP<controlpromoterobservedconversionstargetedpromoter-drivenstablyintegratedgenomegeneratedG-to-AtransitionstreatmentresultingenrichmentresiduesvalidatedregionstransgenicThussystemcontinuoussyntheticgenefunctionsproducevariantsimprovedusingRNAP-basedrandomDNA

Similar Articles

Cited By