Innate immune evasion by alphaviruses.

Yihan Liu, Yupei Yuan, Leiliang Zhang
Author Information
  1. Yihan Liu: Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
  2. Yupei Yuan: Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
  3. Leiliang Zhang: Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.

Abstract

Alphaviruses contain many human and animal pathogens, such as CHIKV, SINV, and VEEV. Accumulating evidence indicates that innate immunity plays an important role in response to alphaviruses infection. In parallel, alphaviruses have evolved many strategies to evade host antiviral innate immunity. In the current review, we focus on the underlying mechanisms employed by alphaviruses to evade cGAS-STING, IFN, transcriptional host shutoff, translational host shutoff, and RNAi. Dissecting the detailed antiviral immune evasion mechanisms by alphaviruses will enhance our understanding of the pathogenesis of alphaviruses and may provide more effective strategies to control alphaviruses infection.

Keywords

References

  1. J Virol. 2002 Nov;76(22):11254-64 [PMID: 12388685]
  2. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9558-9567 [PMID: 31000599]
  3. Curr Opin Virol. 2022 Feb;52:244-249 [PMID: 34973476]
  4. Annu Rev Immunol. 2014;32:461-88 [PMID: 24655297]
  5. J Virol. 2018 Feb 26;92(6): [PMID: 29298887]
  6. Nucleic Acids Res. 1996 Aug 1;24(15):2924-9 [PMID: 8760875]
  7. Viruses. 2022 Jul 20;14(7): [PMID: 35891557]
  8. Biochim Biophys Acta. 2011 Dec;1808(12):2981-94 [PMID: 21819967]
  9. Sci Rep. 2017 Feb 02;7:41746 [PMID: 28150709]
  10. EMBO J. 2003 Mar 3;22(5):1180-7 [PMID: 12606582]
  11. J Virol. 2009 Oct;83(20):10571-81 [PMID: 19656875]
  12. Biochem Biophys Res Commun. 2019 Jun 11;513(4):919-924 [PMID: 31005258]
  13. PLoS Pathog. 2013;9(7):e1003494 [PMID: 23853601]
  14. Front Microbiol. 2022 Feb 14;13:845137 [PMID: 35237253]
  15. J Virol. 2018 Nov 12;92(23): [PMID: 30232189]
  16. Pathog Glob Health. 2018 Jun;112(4):182-194 [PMID: 29806537]
  17. mBio. 2022 Aug 30;13(4):e0130822 [PMID: 35699371]
  18. Cell Host Microbe. 2008 Apr 17;3(4):245-52 [PMID: 18342597]
  19. Virology. 2020 Mar;542:63-70 [PMID: 32056669]
  20. J Virol. 2003 Nov;77(21):11555-62 [PMID: 14557641]
  21. Viruses. 2019 Feb 18;11(2): [PMID: 30781656]
  22. J Virol. 2016 Oct 28;90(22):10247-10258 [PMID: 27581990]
  23. J Virol. 2005 Jun;79(12):7597-608 [PMID: 15919912]
  24. J Gen Virol. 2015 Mar;96(Pt 3):580-589 [PMID: 25395592]
  25. J Microbiol Biotechnol. 2019 Nov 28;29(11):1852-1859 [PMID: 31635445]
  26. Virol Sin. 2022 Apr;37(2):157-167 [PMID: 35278697]
  27. Microbiol Rev. 1994 Sep;58(3):491-562 [PMID: 7968923]
  28. Viruses. 2016 Jun 11;8(6): [PMID: 27294951]
  29. J Virol. 2006 Jun;80(12):5686-96 [PMID: 16731907]
  30. J Gen Virol. 2008 Jan;89(Pt 1):1-47 [PMID: 18089727]
  31. Viruses. 2017 Aug 18;9(8): [PMID: 28820485]
  32. Front Immunol. 2020 Aug 28;11:1637 [PMID: 32983084]
  33. Mol Cell. 2017 Jun 15;66(6):761-771 [PMID: 28622521]
  34. J Mol Biol. 2010 Mar 26;397(2):448-56 [PMID: 20114053]
  35. Rev Med Virol. 2016 Jul;26(4):221-41 [PMID: 26990827]
  36. Virol J. 2013 Jan 28;10:36 [PMID: 23356742]
  37. Viruses. 2022 May 05;14(5): [PMID: 35632709]
  38. Virology. 2013 Mar 30;438(1):37-49 [PMID: 23411007]
  39. Immunity. 2012 Apr 20;36(4):503-14 [PMID: 22520844]
  40. J Virol. 2018 Aug 16;92(17): [PMID: 29925658]
  41. Front Microbiol. 2022 Mar 04;13:865592 [PMID: 35308390]
  42. Protein Cell. 2014 May;5(5):369-81 [PMID: 24622840]
  43. Retrovirology. 2010 Jun 07;7:51 [PMID: 20529266]
  44. J Virol. 2017 Jan 18;91(3): [PMID: 27852852]
  45. Nat Cell Biol. 2000 Jun;2(6):326-32 [PMID: 10854322]
  46. J Virol. 2020 Jan 17;94(3): [PMID: 31694940]
  47. Cells. 2021 Dec 12;10(12): [PMID: 34944018]
  48. Science. 2019 Mar 8;363(6431): [PMID: 30846571]
  49. Immunity. 2006 Sep;25(3):349-60 [PMID: 16979567]
  50. Nature. 2008 Jan 24;451(7177):425-30 [PMID: 18200009]
  51. J Virol. 2013 Sep;87(18):10394-400 [PMID: 23864632]
  52. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  53. J Virol. 2017 Jan 18;91(3): [PMID: 27852864]
  54. J Virol. 2007 Mar;81(5):2391-400 [PMID: 17182693]
  55. Annu Rev Immunol. 2002;20:853-85 [PMID: 11861620]
  56. Viruses. 2021 Oct 20;13(11): [PMID: 34834923]
  57. J Virol. 2007 Mar;81(5):2472-84 [PMID: 17108023]
  58. Microbiol Mol Biol Rev. 2020 Sep 30;84(4): [PMID: 32998978]
  59. PLoS Pathog. 2020 Oct 15;16(10):e1008999 [PMID: 33057424]
  60. Trends Biochem Sci. 2022 May 23;: [PMID: 35618579]
  61. Adv Virus Res. 2021;111:111-156 [PMID: 34663497]

MeSH Term

Alphavirus
Alphavirus Infections
Animals
Humans
Immune Evasion
Nucleotidyltransferases

Chemicals

Nucleotidyltransferases

Word Cloud

Created with Highcharts 10.0.0alphavirusesinnatehostimmuneevasionmanyCHIKVimmunityinfectionstrategiesevadeantiviralmechanismsshutoffAlphavirusescontainhumananimalpathogensSINVVEEVAccumulatingevidenceindicatesplaysimportantroleresponseparallelevolvedcurrentreviewfocusunderlyingemployedcGAS-STINGIFNtranscriptionaltranslationalRNAiDissectingdetailedwillenhanceunderstandingpathogenesismayprovideeffectivecontrolInnateSTINGalphavirusinterferon

Similar Articles

Cited By (7)