Cold spots are universal in protein-protein interactions.

Sagara N S Gurusinghe, Ben Oppenheimer, Julia M Shifman
Author Information
  1. Sagara N S Gurusinghe: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
  2. Ben Oppenheimer: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
  3. Julia M Shifman: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. ORCID

Abstract

Proteins interact with each other through binding interfaces that differ greatly in size and physico-chemical properties. Within the binding interface, a few residues called hot spots contribute the majority of the binding free energy and are hence irreplaceable. In contrast, cold spots are occupied by suboptimal amino acids, providing possibility for affinity enhancement through mutations. In this study, we identify cold spots due to cavities and unfavorable charge interactions in multiple protein-protein interactions (PPIs). For our cold spot analysis, we first use a small affinity database of PPIs with known structures and affinities and then expand our search to nearly 4000 homo- and heterodimers in the Protein Data Bank (PDB). We observe that cold spots due to cavities are present in nearly all PPIs unrelated to their binding affinity, while unfavorable charge interactions are relatively rare. We also find that most cold spots are located in the periphery of the binding interface, with high-affinity complexes showing fewer centrally located colds spots than low-affinity complexes. A larger number of cold spots is also found in non-cognate interactions compared to their cognate counterparts. Furthermore, our analysis reveals that cold spots are more frequent in homo-dimeric complexes compared to hetero-complexes, likely due to symmetry constraints imposed on sequences of homodimers. Finally, we find that glycines, glutamates, and arginines are the most frequent amino acids appearing at cold spot positions. Our analysis emphasizes the importance of cold spot positions to protein evolution and facilitates protein engineering studies directed at enhancing binding affinity and specificity in a wide range of applications.

Keywords

References

  1. J Mol Biol. 1979 Feb 5;127(4):357-74 [PMID: 311834]
  2. PLoS One. 2011;6(6):e21053 [PMID: 21738603]
  3. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8705-10 [PMID: 27436899]
  4. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83 [PMID: 17452350]
  5. Trends Biochem Sci. 2016 Sep;41(9):739-745 [PMID: 27477052]
  6. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4843-7 [PMID: 6956896]
  7. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10080-5 [PMID: 20479265]
  8. Structure. 2018 Jun 5;26(6):905-915.e4 [PMID: 29779789]
  9. Naunyn Schmiedebergs Arch Pharmacol. 2019 Apr;392(4):497-504 [PMID: 30607468]
  10. Nucleic Acids Res. 2016 Jul 8;44(W1):W469-73 [PMID: 27216816]
  11. BMC Bioinformatics. 2010 May 12;11:244 [PMID: 20462403]
  12. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3539-44 [PMID: 14988501]
  13. J Mol Biol. 2017 Nov 10;429(22):3353-3362 [PMID: 28911847]
  14. Curr Opin Struct Biol. 1999 Aug;9(4):509-13 [PMID: 10449371]
  15. Nature. 2017 May 18;545(7654):317-322 [PMID: 28489817]
  16. PLoS Comput Biol. 2009 Dec;5(12):e1000627 [PMID: 20041208]
  17. Nature. 2017 Aug 10;548(7666):244-247 [PMID: 28783726]
  18. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W333-9 [PMID: 23723246]
  19. Biochemistry. 1993 Jun 15;32(23):5978-84 [PMID: 8507637]
  20. Biochemistry. 1998 Oct 20;37(42):14683-91 [PMID: 9778343]
  21. Protein Sci. 2004 Jan;13(1):190-202 [PMID: 14691234]
  22. J Mol Biol. 2005 Feb 4;345(5):1281-94 [PMID: 15644221]
  23. Curr Opin Struct Biol. 2017 Jun;44:31-38 [PMID: 27866112]
  24. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9459-64 [PMID: 10449714]
  25. Nature. 1975 Aug 28;256(5520):705-8 [PMID: 1153006]
  26. Nucleic Acids Res. 2019 Jul 2;47(W1):W338-W344 [PMID: 31114883]
  27. Hum Mutat. 2012 Feb;33(2):359-63 [PMID: 22072597]
  28. Protein Sci. 1992 Jan;1(1):169-81 [PMID: 1339024]
  29. Bioinformation. 2005 Aug 11;1(2):28-39 [PMID: 17597849]
  30. Bioinformatics. 2014 Dec 15;30(24):3583-9 [PMID: 25172924]
  31. Protein Sci. 2011 Mar;20(3):482-91 [PMID: 21213247]
  32. Nat Struct Biol. 1998 Feb;5(2):119-23 [PMID: 9461077]
  33. Proteins. 2002 May 15;47(3):334-43 [PMID: 11948787]
  34. J Chem Phys. 2015 Dec 28;143(24):243149 [PMID: 26723634]
  35. PLoS One. 2014 Apr 07;9(4):e93712 [PMID: 24710006]
  36. Nature. 1987 Aug 27-Sep 2;328(6133):834-6 [PMID: 3627230]
  37. Curr Opin Chem Biol. 2022 Aug;69:102169 [PMID: 35749929]
  38. Protein Sci. 2022 Oct;31(10):e4435 [PMID: 36173158]
  39. Elife. 2015 Jul 20;4:e07454 [PMID: 26193119]
  40. Proteins. 2003 Nov 15;53(3):708-19 [PMID: 14579361]
  41. Prog Biophys Mol Biol. 2014 Nov-Dec;116(2-3):165-73 [PMID: 24997383]
  42. Chem Rev. 2016 Apr 27;116(8):4884-909 [PMID: 27074302]
  43. Biochemistry. 1972 Aug 1;11(16):2967-77 [PMID: 5041905]
  44. Science. 2011 Dec 2;334(6060):1289-93 [PMID: 22033520]
  45. Nat Methods. 2018 Jan;15(1):67-72 [PMID: 29155427]
  46. Biochemistry. 2010 Nov 2;49(43):9256-68 [PMID: 20836565]
  47. Nat Methods. 2009 Jan;6(1):3-4 [PMID: 19116609]
  48. PLoS One. 2014 Oct 16;9(10):e110085 [PMID: 25329579]
  49. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):13-20 [PMID: 8552589]
  50. Protein Eng Des Sel. 2021 Feb 15;34: [PMID: 34436606]
  51. J Mol Biol. 2007 Aug 31;371(5):1392-404 [PMID: 17603074]
  52. Bioinformation. 2006 Apr 04;1(4):121-6 [PMID: 17597870]
  53. J Mol Biol. 2010 Nov 5;403(4):660-70 [PMID: 20868694]
  54. BMC Syst Biol. 2015;9 Suppl 5:S3 [PMID: 26356630]
  55. Science. 1995 Jan 20;267(5196):383-6 [PMID: 7529940]
  56. Expert Opin Drug Discov. 2018 Apr;13(4):327-338 [PMID: 29376444]
  57. J Comput Aided Mol Des. 2013 Jan;27(1):67-78 [PMID: 23306464]
  58. J Mol Biol. 1998 Jul 3;280(1):1-9 [PMID: 9653027]
  59. Biochemistry. 1998 Aug 25;37(34):11771-9 [PMID: 9718299]
  60. Comput Struct Biotechnol J. 2021;19:2246-2255 [PMID: 33936565]
  61. Protein J. 2008 Jan;27(1):59-70 [PMID: 17851740]
  62. Curr Pharm Des. 2012;18(9):1255-65 [PMID: 22316154]
  63. Proteomics. 2012 May;12(10):1478-98 [PMID: 22711592]
  64. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8477-82 [PMID: 10411900]
  65. Acc Chem Res. 2013 Apr 16;46(4):885-93 [PMID: 23214924]
  66. J Am Chem Soc. 2021 Oct 20;143(41):17261-17275 [PMID: 34609866]
  67. Cell Rep. 2015 Oct 27;13(4):703-711 [PMID: 26489469]
  68. Structure. 2014 Apr 8;22(4):636-45 [PMID: 24613488]
  69. Nature. 2016 May 5;533(7601):58-63 [PMID: 27120167]

Grants

  1. R01 CA258274/NCI NIH HHS
  2. R01CA258274/NCI NIH HHS

MeSH Term

Amino Acids
Databases, Protein
Glutamates
Protein Binding
Protein Engineering
Proteins

Chemicals

Amino Acids
Glutamates
Proteins

Word Cloud

Created with Highcharts 10.0.0spotsbindingcoldinteractionsaffinitydueprotein-proteinPPIsspotanalysiscomplexesinterfacesinterfacehotaminoacidscavitiesunfavorablechargenearlyalsofindlocatedcomparedfrequentpositionsproteinProteinsinteractdiffergreatlysizephysico-chemicalpropertiesWithinresiduescalledcontributemajorityfreeenergyhenceirreplaceablecontrastoccupiedsuboptimalprovidingpossibilityenhancementmutationsstudyidentifymultiplefirstusesmalldatabaseknownstructuresaffinitiesexpandsearch4000homo-heterodimersProteinDataBankPDBobservepresentunrelatedrelativelyrareperipheryhigh-affinityshowingfewercentrallycoldslow-affinitylargernumberfoundnon-cognatecognatecounterpartsFurthermorerevealshomo-dimerichetero-complexeslikelysymmetryconstraintsimposedsequenceshomodimersFinallyglycinesglutamatesargininesappearingemphasizesimportanceevolutionfacilitatesengineeringstudiesdirectedenhancingspecificitywiderangeapplicationsColduniversal

Similar Articles

Cited By