Insight into the pulmonary molecular toxicity of heated tobacco products using human bronchial and alveolar mucosa models at air-liquid interface.

Mizanur Rahman, Martin Irmler, Micol Introna, Johannes Beckers, Lena Palmberg, Gunnar Johanson, Swapna Upadhyay, Koustav Ganguly
Author Information
  1. Mizanur Rahman: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
  2. Martin Irmler: Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Neuherberg, Germany.
  3. Micol Introna: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
  4. Johannes Beckers: Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Neuherberg, Germany.
  5. Lena Palmberg: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
  6. Gunnar Johanson: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
  7. Swapna Upadhyay: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden. swapna.upadhyay@ki.se.
  8. Koustav Ganguly: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden. koustav.ganguly@ki.se.

Abstract

Heated tobacco products (HTP) are novel nicotine delivery products with limited toxicological data. HTP uses heating instead of combustion to generate aerosol (HTP-smoke). Physiologically relevant human bronchial and alveolar lung mucosa models developed at air-liquid interface were exposed to HTP-smoke to assess broad toxicological response (n = 6-7; ISO puffing regimen; compared to sham; non-parametric statistical analysis; significance: p < 0.05). Elevated levels of total cellular reactive oxygen species, stress responsive nuclear factor kappa-B, and DNA damage markers [8-hydroxy-2'-deoxyguanosine, phosphorylated histone H2AX, cleaved poly-(ADP-Ribose) polymerase] were detected in HTP-smoke exposed bronchial and/or alveolar models. RNA sequencing detected differential regulation of 724 genes in the bronchial- and 121 genes in the alveolar model following HTP-smoke exposure (cut off: p ≤ 0.01; fold change: ≥ 2). Common enriched pathways included estrogen biosynthesis, ferroptosis, superoxide radical degradation, xenobiotics, and α-tocopherol degradation. Secreted levels of interleukin (IL)1ꞵ and IL8 increased in the bronchial model whereas in the alveolar model, interferon-γ and IL4 increased and IL13 decreased following HTP-smoke exposure. Increased lipid peroxidation was detected in HTP-smoke exposed bronchial and alveolar models which was inhibited by ferrostatin-1. The findings form a basis to perform independent risk assessment studies on different flavours of HTP using different puffing topography and corresponding chemical characterization.

References

  1. Antioxidants (Basel). 2021 May 31;10(6): [PMID: 34072997]
  2. Int J Environ Res Public Health. 2021 Jun 21;18(12): [PMID: 34205612]
  3. Trends Pharmacol Sci. 2013 Sep;34(9):518-30 [PMID: 23953592]
  4. Am J Physiol Lung Cell Mol Physiol. 2014 Aug 1;307(3):L205-18 [PMID: 24879054]
  5. Adv Respir Med. 2020;88(2):142-146 [PMID: 32383466]
  6. J Epidemiol. 2022 Mar 5;32(3):139-144 [PMID: 33456019]
  7. Physiol Rep. 2017 Jul;5(13): [PMID: 28701525]
  8. Toxicol Lett. 2018 May 15;288:143-155 [PMID: 29481849]
  9. Redox Biol. 2020 Jan;28:101328 [PMID: 31574461]
  10. Intern Emerg Med. 2021 Apr;16(3):687-696 [PMID: 33754228]
  11. Environ Health Prev Med. 2015 Sep;20(5):318-24 [PMID: 25967734]
  12. Mutat Res. 2009 May 31;676(1-2):34-40 [PMID: 19486862]
  13. Nicotine Tob Res. 2018 Jul 9;20(8):1004-1009 [PMID: 28637344]
  14. Nat Commun. 2019 Jul 17;10(1):3145 [PMID: 31316058]
  15. Respirol Case Rep. 2016 Oct 03;4(6):e00190 [PMID: 28031826]
  16. Sci Rep. 2020 Nov 24;10(1):20460 [PMID: 33235237]
  17. Addiction. 2018 Nov;113(11):2099-2106 [PMID: 29920842]
  18. Tob Control. 2018 Nov;27(Suppl 1):s26-s29 [PMID: 30185530]
  19. PLoS One. 2017 Jan 20;12(1):e0170428 [PMID: 28107509]
  20. Signal Transduct Target Ther. 2021 Feb 3;6(1):49 [PMID: 33536413]
  21. Am J Physiol Lung Cell Mol Physiol. 2015 Aug 1;309(3):L293-304 [PMID: 26024894]
  22. Nicotine Tob Res. 2021 Jun 8;23(7):1160-1167 [PMID: 33346355]
  23. Cell Death Discov. 2019 Aug 5;5:127 [PMID: 31396404]
  24. Respir Med Case Rep. 2018 Dec 04;26:87-90 [PMID: 30560050]
  25. Nicotine Tob Res. 2019 Aug 19;21(9):1285-1288 [PMID: 30476301]
  26. Mutat Res. 2009 Aug;678(1):43-52 [PMID: 19591958]
  27. Lancet Reg Health Eur. 2021 Jul 14;8:100159 [PMID: 34557853]
  28. JAMA Intern Med. 2017 Jul 1;177(7):1050-1052 [PMID: 28531246]
  29. Nanotoxicology. 2019 Dec;13(10):1362-1379 [PMID: 31462114]
  30. Toxicol Appl Pharmacol. 2011 Jul 15;254(2):72-85 [PMID: 21296096]
  31. Viruses. 2021 Dec 17;13(12): [PMID: 34960806]
  32. Tob Control. 2018 Nov;27(Suppl 1):s37-s38 [PMID: 30242043]
  33. Toxicol In Vitro. 2019 Dec;61:104617 [PMID: 31381966]
  34. Int J Environ Res Public Health. 2018 May 21;15(5): [PMID: 29883409]
  35. Biomed Res Int. 2020 Oct 08;2020:3259723 [PMID: 33110918]
  36. Mol Cell Biochem. 2007 Mar;297(1-2):93-9 [PMID: 17021677]
  37. Front Physiol. 2017 Apr 27;8:263 [PMID: 28496415]
  38. Toxicol Mech Methods. 2020 Feb;30(2):81-87 [PMID: 31532297]
  39. FASEB J. 2021 Mar;35(3):e21376 [PMID: 33605487]
  40. Mol Cell. 2015 Jun 18;58(6):947-58 [PMID: 26091343]
  41. Chem Biol Interact. 1992 Jan;81(1-2):197-208 [PMID: 1309685]
  42. Methods Mol Biol. 2020;2108:125-130 [PMID: 31939176]
  43. Cancer Prev Res (Phila). 2010 Jun;3(6):692-5 [PMID: 20515955]
  44. J Immunol. 2008 Mar 1;180(5):3305-12 [PMID: 18292555]
  45. Trends Cell Biol. 2016 Mar;26(3):165-176 [PMID: 26653790]
  46. Drug Des Devel Ther. 2021 Mar 23;15:1275-1284 [PMID: 33790539]
  47. Tob Control. 2019 Jan;28(1):34-41 [PMID: 29535257]
  48. Tob Control. 2018 Nov;27(Suppl 1):s20-s25 [PMID: 30158203]
  49. Tob Control. 2018 Nov;27(Suppl 1):s1-s6 [PMID: 30352841]
  50. Tob Control. 2020 Jan;29(1):89-95 [PMID: 30696783]
  51. Curr Biol. 2020 Nov 2;30(21):R1292-R1297 [PMID: 33142092]
  52. Part Fibre Toxicol. 2018 May 2;15(1):19 [PMID: 29716632]
  53. Tob Control. 2018 Nov;27(Suppl 1):s30-s36 [PMID: 30158205]
  54. Respir Investig. 2019 Mar;57(2):111-121 [PMID: 30630751]
  55. Medicina (Kaunas). 2020 Jun 12;56(6): [PMID: 32545573]
  56. Sci Rep. 2020 Nov 10;10(1):19436 [PMID: 33173147]
  57. J Inflamm Res. 2021 Feb 05;14:299-311 [PMID: 33574691]
  58. Int Immunopharmacol. 2013 Jan;15(1):58-66 [PMID: 23127823]
  59. Environ Pollut. 2018 Sep;240:248-254 [PMID: 29747109]
  60. Chem Res Toxicol. 2020 Jul 20;33(7):1882-1887 [PMID: 32432464]
  61. PLoS One. 2014 Aug 05;9(8):e103993 [PMID: 25093845]
  62. Tob Control. 2019 Sep;28(5):582-594 [PMID: 30181382]
  63. Nicotine Tob Res. 2019 Jan 1;21(1):111-118 [PMID: 29319815]
  64. Cells. 2021 May 12;10(5): [PMID: 34065904]
  65. Cell. 2012 May 25;149(5):1060-72 [PMID: 22632970]
  66. J UOEH. 2017;39(3):201-207 [PMID: 28904270]
  67. Mutat Res Rev Mutat Res. 2021 Jan-Jun;787:108365 [PMID: 34083039]
  68. Front Toxicol. 2021 Jul 06;3:653569 [PMID: 35295140]

MeSH Term

8-Hydroxy-2'-Deoxyguanosine
Adenosine Diphosphate Ribose
Aerosols
Estrogens
Histones
Humans
Interferon-gamma
Interleukin-13
Interleukin-4
Interleukin-8
Mucous Membrane
Nicotine
Reactive Oxygen Species
Smoke
Superoxides
Tobacco Products
alpha-Tocopherol

Chemicals

Aerosols
Estrogens
Histones
Interleukin-13
Interleukin-8
Reactive Oxygen Species
Smoke
Superoxides
Interleukin-4
Adenosine Diphosphate Ribose
Nicotine
Interferon-gamma
8-Hydroxy-2'-Deoxyguanosine
alpha-Tocopherol

Word Cloud

Created with Highcharts 10.0.0HTP-smokealveolarbronchialmodelsproductsHTPexposeddetectedmodeltobaccotoxicologicalhumanmucosaair-liquidinterfacepuffinglevelsgenesfollowingexposuredegradationincreaseddifferentusingHeatednovelnicotinedeliverylimiteddatausesheatinginsteadcombustiongenerateaerosolPhysiologicallyrelevantlungdevelopedassessbroadresponsen = 6-7ISOregimencomparedshamnon-parametricstatisticalanalysissignificance:p < 005Elevatedtotalcellularreactiveoxygenspeciesstressresponsivenuclearfactorkappa-BDNAdamagemarkers[8-hydroxy-2'-deoxyguanosinephosphorylatedhistoneH2AXcleavedpoly-ADP-Ribosepolymerase]and/orRNAsequencingdifferentialregulation724bronchial-121cutoff:p ≤ 001foldchange:≥ 2Commonenrichedpathwaysincludedestrogenbiosynthesisferroptosissuperoxideradicalxenobioticsα-tocopherolSecretedinterleukinIL1ꞵIL8whereasinterferon-γIL4IL13decreasedIncreasedlipidperoxidationinhibitedferrostatin-1findingsformbasisperformindependentriskassessmentstudiesflavourstopographycorrespondingchemicalcharacterizationInsightpulmonarymoleculartoxicityheated

Similar Articles

Cited By