Multi-atlas thalamic nuclei segmentation on standard T1-weighed MRI with application to normal aging.

Adolf Pfefferbaum, Edith V Sullivan, Natalie M Zahr, Kilian M Pohl, Manojkumar Saranathan
Author Information
  1. Adolf Pfefferbaum: Center for Health Sciences, SRI International, Menlo Park, California, USA. ORCID
  2. Edith V Sullivan: Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA. ORCID
  3. Natalie M Zahr: Center for Health Sciences, SRI International, Menlo Park, California, USA. ORCID
  4. Kilian M Pohl: Center for Health Sciences, SRI International, Menlo Park, California, USA. ORCID
  5. Manojkumar Saranathan: Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA. ORCID

Abstract

Specific thalamic nuclei are implicated in healthy aging and age-related neurodegenerative diseases. However, few methods are available for robust automated segmentation of thalamic nuclei. The threefold aims of this study were to validate the use of a modified thalamic nuclei segmentation method on standard T1 MRI data, to apply this method to quantify age-related volume declines, and to test functional meaningfulness by predicting performance on motor testing. A modified version of THalamus Optimized Multi-Atlas Segmentation (THOMAS) generated 22 unilateral thalamic nuclei. For validation, we compared nuclear volumes obtained from THOMAS parcellation of white-matter-nulled (WMn) MRI data to T1 MRI data in 45 participants. To examine the effects of age/sex on thalamic nuclear volumes, T1 MRI available from a second data set of 121 men and 117 women, ages 20-86 years, were segmented using THOMAS. To test for functional ramifications, composite regions and constituent nuclei were correlated with Grooved Pegboard test scores. THOMAS on standard T1 data showed significant quantitative agreement with THOMAS from WMn data, especially for larger nuclei. Sex differences revealing larger volumes in men than women were accounted for by adjustment with supratentorial intracranial volume (sICV). Significant sICV-adjusted correlations between age and thalamic nuclear volumes were detected in 20 of the 22 unilateral nuclei and whole thalamus. Composite Posterior and Ventral regions and Ventral Anterior/Pulvinar nuclei correlated selectively with higher scores from the eye-hand coordination task. These results support the use of THOMAS for standard T1-weighted data as adequately robust for thalamic nuclear parcellation.

Keywords

References

  1. Neurobiol Aging. 2005 Oct;26(9):1261-70; discussion 1275-8 [PMID: 16005549]
  2. Nat Rev Neurol. 2011 May;7(5):284-94 [PMID: 21487421]
  3. Brain Struct Funct. 2020 Jun;225(5):1631-1642 [PMID: 32440784]
  4. Neuroinformatics. 2022 Jul;20(3):651-664 [PMID: 34626333]
  5. J Neurosurg. 2021 Oct 8;:1-10 [PMID: 34624856]
  6. Neurosci Biobehav Rev. 2021 Sep;128:487-510 [PMID: 34216654]
  7. Neurosci Biobehav Rev. 2015 Jul;54:29-37 [PMID: 25862940]
  8. Brain. 2000 Jan;123 ( Pt 1):141-54 [PMID: 10611128]
  9. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Oct;3(10):844-859 [PMID: 30093343]
  10. Handb Clin Neurol. 2014;125:175-81 [PMID: 25307575]
  11. Neurosci Biobehav Rev. 2021 Nov;130:292-300 [PMID: 34454914]
  12. Heliyon. 2020 Aug 18;6(8):e04728 [PMID: 32904672]
  13. Neurosci Biobehav Rev. 2021 Dec;131:466-478 [PMID: 34587501]
  14. Neuroimage. 2000 Dec;12(6):601-16 [PMID: 11112393]
  15. Neuroimage. 2019 Jul 1;194:272-282 [PMID: 30894331]
  16. Magn Reson Med. 2015 May;73(5):1786-94 [PMID: 24889754]
  17. Neuroimage. 2013 Jan 15;65:176-93 [PMID: 23063452]
  18. Neuron. 2019 Sep 4;103(5):762-770 [PMID: 31487527]
  19. Neuroimage. 2018 May 1;171:176-189 [PMID: 29325780]
  20. Front Behav Neurosci. 2021 Mar 01;15:633872 [PMID: 33732119]
  21. Cereb Cortex. 2021 Jul 5;31(8):3856-3871 [PMID: 33825852]
  22. Neuroimage. 2012 Nov 15;63(3):1134-42 [PMID: 22846656]
  23. Neurobiol Aging. 2001 Jul-Aug;22(4):581-94 [PMID: 11445259]
  24. Hum Brain Mapp. 2015 Jul;36(7):2809-25 [PMID: 25873194]
  25. Radiology. 2020 Mar;294(3):676-685 [PMID: 31909701]
  26. Sci Data. 2018 Nov 27;5:180270 [PMID: 30480664]
  27. Neuroimage. 2013 Oct 15;80:62-79 [PMID: 23684880]
  28. J Neurophysiol. 2008 Oct;100(4):1740-8 [PMID: 18701759]
  29. Brain. 2016 Jul;139(Pt 7):1877-90 [PMID: 27190025]
  30. Neuroimage. 2018 Dec;183:314-326 [PMID: 30121337]
  31. Int J Mol Sci. 2021 May 07;22(9): [PMID: 34067023]
  32. Cereb Cortex. 2005 Nov;15(11):1676-89 [PMID: 15703252]
  33. Hum Brain Mapp. 2019 Dec 15;40(18):5269-5288 [PMID: 31452289]
  34. Alzheimers Dement. 2010 May;6(3):212-20 [PMID: 20451869]
  35. J Neurosurg. 2021 Oct 1;:1-7 [PMID: 34598140]
  36. Cortex. 2015 Apr;65:128-38 [PMID: 25682047]
  37. Nat Commun. 2020 Nov 26;11(1):6007 [PMID: 33243980]
  38. Hum Brain Mapp. 2020 Apr 1;41(5):1351-1361 [PMID: 31785046]
  39. Cortex. 2021 Dec;145:37-56 [PMID: 34689031]
  40. Cortex. 2014 Oct;59:12-21 [PMID: 25113955]
  41. Brain. 2019 May 1;142(5):1458-1470 [PMID: 30879030]
  42. JAMA Psychiatry. 2018 May 1;75(5):474-483 [PMID: 29541774]
  43. J Comp Neurol. 2022 Aug;530(11):1992-2013 [PMID: 35383929]
  44. Cell. 2022 Mar 17;185(6):1065-1081.e23 [PMID: 35245431]
  45. Biol Psychiatry. 2012 Sep 1;72(5):361-70 [PMID: 22458948]
  46. Neurobiol Aging. 2013 Oct;34(10):2239-47 [PMID: 23643484]
  47. Neuroimage. 2017 Feb 15;147:678-691 [PMID: 28041978]
  48. Hum Brain Mapp. 2023 Feb 1;44(2):612-628 [PMID: 36181510]
  49. Cereb Cortex. 2016 Oct;26(10):4101-21 [PMID: 26408800]
  50. Neurobiol Aging. 2020 Jun;90:84-92 [PMID: 32147244]
  51. Magn Reson Imaging. 2019 Jun;59:143-152 [PMID: 30880111]
  52. Magn Reson Imaging. 2020 Jan;65:114-128 [PMID: 31629074]
  53. Neurosci Biobehav Rev. 2021 Jun;125:231-243 [PMID: 33662442]
  54. Sci Data. 2021 Oct 28;8(1):275 [PMID: 34711852]
  55. eNeuro. 2022 Feb 2;9(1): [PMID: 35045976]
  56. Alzheimers Res Ther. 2014 Nov 10;6(9):74 [PMID: 25478032]
  57. J Alzheimers Dis. 2021;82(1):361-371 [PMID: 34024824]
  58. Hum Brain Mapp. 2022 Jan;43(1):452-469 [PMID: 33570244]
  59. J Stud Alcohol Drugs. 2015 Nov;76(6):895-908 [PMID: 26562597]

Grants

  1. R01 AA010723/NIAAA NIH HHS

MeSH Term

Humans
Male
Female
Young Adult
Adult
Middle Aged
Aged
Aged, 80 and over
Thalamic Nuclei
Thalamus
Aging
White Matter
Magnetic Resonance Imaging

Word Cloud

Created with Highcharts 10.0.0nucleithalamicMRIdataTHOMASsegmentationstandardT1nuclearvolumesagingtestage-relatedavailablerobustusemodifiedmethodvolumefunctional22unilateralparcellationWMnmenwomenregionscorrelatedscoreslargerthalamusVentralT1-weightedSpecificimplicatedhealthyneurodegenerativediseasesHowevermethodsautomatedthreefoldaimsstudyvalidateapplyquantifydeclinesmeaningfulnesspredictingperformancemotortestingversionTHalamusOptimizedMulti-AtlasSegmentationgeneratedvalidationcomparedobtainedwhite-matter-nulled45participantsexamineeffectsage/sexsecondset121117ages20-86 yearssegmentedusingramificationscompositeconstituentGroovedPegboardshowedsignificantquantitativeagreementespeciallySexdifferencesrevealingaccountedadjustmentsupratentorialintracranialsICVSignificantsICV-adjustedcorrelationsagedetected20wholeCompositePosteriorAnterior/Pulvinarselectivelyhighereye-handcoordinationtaskresultssupportadequatelyMulti-atlasT1-weighedapplicationnormalwhitematternulled

Similar Articles

Cited By