Establishment and validation of a radiological-radiomics model for predicting high-grade patterns of lung adenocarcinoma less than or equal to 3 cm.

Hao Dong, Lekang Yin, Lei Chen, Qingle Wang, Xianpan Pan, Yang Li, Xiaodan Ye, Mengsu Zeng
Author Information
  1. Hao Dong: Department of Radiology, First People's Hospital of Xiaoshan District, Hangzhou, China.
  2. Lekang Yin: Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
  3. Lei Chen: Department of Research, Shanghai United Imaging Intelligence Co. Ltd., Shanghai, China.
  4. Qingle Wang: Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
  5. Xianpan Pan: Department of Research, Shanghai United Imaging Intelligence Co. Ltd., Shanghai, China.
  6. Yang Li: Department of Research, Shanghai United Imaging Intelligence Co. Ltd., Shanghai, China.
  7. Xiaodan Ye: Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
  8. Mengsu Zeng: Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.

Abstract

Objective: We aimed to develop a Radiological-Radiomics (R-R) based model for predicting the high-grade pattern (HGP) of lung adenocarcinoma and evaluate its predictive performance.
Methods: The clinical, pathological, and imaging data of 374 patients pathologically confirmed with lung adenocarcinoma (374 lesions in total) were retrospectively analyzed. The 374 lesions were assigned to HGP (n = 81) and non-high-grade pattern (n-HGP, n = 293) groups depending on the presence or absence of high-grade components in pathological findings. The least absolute shrinkage and selection operator (LASSO) method was utilized to screen features on the United Imaging artificial intelligence scientific research platform, and logistic regression models for predicting HGP were constructed, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve (ROC) curves were plotted on the platform, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy. Using the platform, nomograms for R-R models were also provided, and calibration curves and decision curves were drawn to evaluate the performance and clinical utility of the model. The statistical differences in the performance of the models were compared by the DeLong test.
Results: The R-R model for HGP prediction achieved an AUC value of 0.923 (95% CI: 0.891-0.948), a sensitivity of 87.0%, a specificity of 83.4%, and an accuracy of 84.2% in the training set. In the validation set, this model exhibited an AUC value of 0.920 (95% CI: 0.887-0.945), a sensitivity of 87.5%, a specificity of 83.3%, and an accuracy of 84.2%. The DeLong test demonstrated optimal performance of the R-R model among the three models, and decision curves validated the clinical utility of the R-R model.
Conclusion: In this study, we developed a fusion model using radiomic features combined with radiological features to predict the high-grade pattern of lung adenocarcinoma, and this model shows excellent diagnostic performance. The R-R model can provide certain guidance for clinical diagnosis and surgical treatment plans, contributing to improving the prognosis of patients.

Keywords

References

  1. BMC Cancer. 2021 Oct 19;21(1):1124 [PMID: 34666705]
  2. Pathologica. 2018 Mar;110(1):5-11 [PMID: 30259909]
  3. Zhonghua Yi Xue Za Zhi. 2021 Sep 14;101(34):2717-2722 [PMID: 34510879]
  4. Ann Surg. 2013 Dec;258(6):1079-86 [PMID: 23532112]
  5. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  6. J Thorac Cardiovasc Surg. 2014 Mar;147(3):921-928.e2 [PMID: 24199757]
  7. J Thorac Cardiovasc Surg. 2018 Mar;155(3):1227-1235.e2 [PMID: 29223834]
  8. Oncotarget. 2018 Nov 06;9(87):35742-35751 [PMID: 30515266]
  9. Cancers (Basel). 2021 Aug 13;13(16): [PMID: 34439230]
  10. Eur J Radiol. 2020 Aug;129:109150 [PMID: 32604042]
  11. J Thorac Dis. 2021 May;13(5):2844-2857 [PMID: 34164176]
  12. Eur Radiol. 2018 Dec;28(12):5121-5128 [PMID: 29869172]
  13. Sci Rep. 2020 Feb 26;10(1):3436 [PMID: 32103127]
  14. Clin Radiol. 2019 Dec;74(12):933-943 [PMID: 31521324]
  15. Eur Respir J. 2012 Feb;39(2):478-86 [PMID: 21828029]
  16. Gynecol Oncol. 2020 Jan;156(1):107-114 [PMID: 31685232]
  17. EBioMedicine. 2020 Aug;58:102933 [PMID: 32739863]
  18. AJR Am J Roentgenol. 2008 May;190(5):1363-8 [PMID: 18430856]
  19. Eur J Surg Oncol. 2016 Nov;42(11):1714-1719 [PMID: 27017272]
  20. J Clin Oncol. 2016 Feb 1;34(4):307-13 [PMID: 26598742]
  21. IEEE J Biomed Health Inform. 2019 Mar;23(2):795-804 [PMID: 29993848]
  22. Lung Cancer. 2014 Jun;84(3):236-41 [PMID: 24679953]
  23. Transl Oncol. 2021 Aug;14(8):101141 [PMID: 34087705]
  24. J Thorac Oncol. 2020 May;15(5):792-802 [PMID: 32007599]
  25. Eur J Cancer. 2012 Mar;48(4):441-6 [PMID: 22257792]
  26. Front Oncol. 2020 Jul 22;10:1186 [PMID: 32775302]
  27. Front Oncol. 2021 Sep 10;11:725599 [PMID: 34568054]
  28. Nat Commun. 2014 Jun 03;5:4006 [PMID: 24892406]
  29. J Thorac Dis. 2019 Nov;11(11):4835-4846 [PMID: 31903274]
  30. J Thorac Oncol. 2015 Dec;10(12):1785-94 [PMID: 26473646]
  31. Transl Lung Cancer Res. 2021 Feb;10(2):955-964 [PMID: 33718035]
  32. Endocrine. 2022 Jan;75(1):202-210 [PMID: 34468949]
  33. Cancers (Basel). 2021 Jun 04;13(11): [PMID: 34199689]
  34. Thorac Cancer. 2021 Jan;12(2):235-244 [PMID: 33231358]
  35. Ann Thorac Surg. 2019 Jul;108(1):249-255 [PMID: 30876742]
  36. J Clin Oncol. 2014 Aug 1;32(22):2357-64 [PMID: 24799473]
  37. Eur J Cardiothorac Surg. 2017 Feb 1;51(2):218-222 [PMID: 28186287]
  38. Front Oncol. 2021 Oct 27;11:758036 [PMID: 34778075]
  39. Anticancer Res. 2019 Mar;39(3):1491-1500 [PMID: 30842187]
  40. J Thorac Oncol. 2016 Jan;11(1):39-51 [PMID: 26762738]
  41. J Thorac Oncol. 2015 Sep;10(9):1240-1242 [PMID: 26291007]
  42. J Thorac Oncol. 2022 May;17(5):700-707 [PMID: 35227909]

Word Cloud

Created with Highcharts 10.0.0modelR-Rperformancehigh-gradelungadenocarcinomapatternHGPclinicalmodelscurves0predicting374featuresplatformAUCsensitivityspecificityaccuracyevaluatepredictivepathologicalpatientslesionsn=curvedecisionutilityDeLongtestvalue95%CI:8783842%setvalidationObjective:aimeddevelopRadiological-RadiomicsbasedMethods:imagingdatapathologicallyconfirmedtotalretrospectivelyanalyzedassigned81non-high-graden-HGP293groupsdependingpresenceabsencecomponentsfindingsleastabsoluteshrinkageselectionoperatorLASSOmethodutilizedscreenUnitedImagingartificialintelligencescientificresearchlogisticregressionconstructednamelyRadiologicalRadiomicsAlsoreceiveroperatingROCplottedgeneratingcorrespondingareaUsingnomogramsalsoprovidedcalibrationdrawnstatisticaldifferencescomparedResults:predictionachieved923891-09480%4%trainingexhibited920887-09455%3%demonstratedoptimalamongthreevalidatedConclusion:studydevelopedfusionusingradiomiccombinedradiologicalpredictshowsexcellentdiagnosticcanprovidecertainguidancediagnosissurgicaltreatmentplanscontributingimprovingprognosisEstablishmentradiological-radiomicspatternslessequal3cmradiomics

Similar Articles

Cited By