Does the shape of the electric pulse matter in electroporation?

Vitalij Novickij, Nina Rembiałkowska, Wojciech Szlasa, Julita Kulbacka
Author Information
  1. Vitalij Novickij: Faculty of Electronics, Vilnius Gediminas Technical University (Vilnius TECH), Vilnius, Lithuania.
  2. Nina Rembiałkowska: Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
  3. Wojciech Szlasa: Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
  4. Julita Kulbacka: Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.

Abstract

Electric pulses are widely used in biology, medicine, industry, and food processing. Numerous studies indicate that electroporation (EP) is a pulse-dependent process, and the electric pulse shape and duration strongly determine permeabilization efficacy. EP protocols are precisely planned in terms of the size and charge of the molecules, which will be delivered to the cell. In reversible and irreversible EP applications, rectangular or sine, polar or bipolar pulses are commonly used. The usage of pulses of the asymmetric shape is still limited to high voltage and low voltage (HV/LV) sequences in the context of gene delivery, while EP-based applications of ultra-short asymmetric pulses are just starting to emerge. This review emphasizes the importance and role of the pulse shape for membrane permeabilization by EP.

Keywords

References

  1. Biochim Biophys Acta Biomembr. 2019 Jun 1;1861(6):1228-1239 [PMID: 30981731]
  2. Phys Biol. 2006 Nov 02;3(4):233-47 [PMID: 17200599]
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021904 [PMID: 17025469]
  4. Sci Rep. 2017 Jan 20;7:40747 [PMID: 28106146]
  5. Bioelectrochemistry. 2015 Oct;105:65-71 [PMID: 26011130]
  6. Bioelectrochemistry. 2021 Aug;140:107798 [PMID: 33743336]
  7. Melanoma Res. 2009 Dec;19(6):361-71 [PMID: 19730404]
  8. Biomed Eng Online. 2015;14 Suppl 3:S3 [PMID: 26355870]
  9. BMC Cell Biol. 2006 Oct 19;7:37 [PMID: 17052354]
  10. IEEE Eng Med Biol Mag. 1999 Jan-Feb;18(1):62-6 [PMID: 9934602]
  11. Biochim Biophys Acta Biomembr. 2018 May;1860(5):1022-1034 [PMID: 29410049]
  12. Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183213 [PMID: 32057755]
  13. Bioelectrochemistry. 2014 Dec;100:69-79 [PMID: 25131187]
  14. J Am Chem Soc. 2003 May 28;125(21):6382-3 [PMID: 12785774]
  15. Biochim Biophys Acta. 2013 Aug;1828(8):1715-22 [PMID: 23500618]
  16. J Membr Biol. 2018 Dec;251(5-6):681-693 [PMID: 30094474]
  17. Biochim Biophys Acta. 2014 Jul;1840(7):2139-51 [PMID: 24589913]
  18. Sci Rep. 2021 Aug 4;11(1):15835 [PMID: 34349171]
  19. Radiol Oncol. 2010 Mar;44(1):34-41 [PMID: 22933889]
  20. Eur J Surg Oncol. 2018 May;44(5):651-657 [PMID: 29402556]
  21. Radiology. 2020 May;295(2):254-272 [PMID: 32208094]
  22. Radiol Oncol. 2019 Jun 1;53(2):194-205 [PMID: 31194692]
  23. Biochem Biophys Res Commun. 2019 Oct 22;518(4):759-764 [PMID: 31472962]
  24. Technol Cancer Res Treat. 2014 Aug;13(4):337-44 [PMID: 24206208]
  25. Sci Rep. 2015 Oct 13;5:14999 [PMID: 26459930]
  26. Mol Med Rep. 2012 Apr;5(4):981-7 [PMID: 22307872]
  27. Bioelectrochemistry. 2015 Jun;103:44-51 [PMID: 25212701]
  28. Cell J. 2012 Summer;14(2):110-5 [PMID: 23508227]
  29. Sci Rep. 2019 Feb 5;9(1):1436 [PMID: 30723286]
  30. Cancer Cell Int. 2012 Mar 22;12(1):9 [PMID: 22439612]
  31. Biomed Eng Online. 2019 Jun 20;18(1):75 [PMID: 31221146]
  32. J Vasc Interv Radiol. 2012 Dec;23(12):1613-21 [PMID: 23177107]
  33. J Gene Med. 2013 May;15(5):169-81 [PMID: 23564663]
  34. J Clin Neurophysiol. 2007 Feb;24(1):31-8 [PMID: 17277575]
  35. Molecules. 2020 Oct 09;25(20): [PMID: 33050300]
  36. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2016 Apr;44(4):708-714 [PMID: 27563160]
  37. Biochim Biophys Acta. 2016 Nov;1858(11):2689-2698 [PMID: 27372268]
  38. Cardiovasc Intervent Radiol. 2011 Feb;34(1):132-8 [PMID: 20711837]
  39. Sci Rep. 2015 Sep 08;5:13818 [PMID: 26348662]
  40. Cell Mol Life Sci. 2014 Nov;71(22):4431-41 [PMID: 24748074]
  41. IEEE Trans Biomed Eng. 2006 Jul;53(7):1409-15 [PMID: 16830945]
  42. Bioelectrochemistry. 2020 Apr;132:107442 [PMID: 31923714]
  43. Biochem Biophys Res Commun. 2014 Jan 10;443(2):568-73 [PMID: 24332942]
  44. Leuk Res. 1991;15(6):507-13 [PMID: 1907340]
  45. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4230-4 [PMID: 2034667]
  46. Sci Rep. 2019 Sep 11;9(1):13116 [PMID: 31511591]
  47. Bioelectrochemistry. 2020 Oct;135:107544 [PMID: 32438309]
  48. J Membr Biol. 2010 Jul;236(1):81-5 [PMID: 20623115]
  49. PLoS One. 2007 Nov 07;2(11):e1135 [PMID: 17989772]
  50. Biophys J. 2003 Apr;84(4):2709-14 [PMID: 12668479]
  51. Biophys J. 2007 Jan 15;92(2):404-17 [PMID: 17056739]
  52. Hum Gene Ther. 2005 Oct;16(10):1194-201 [PMID: 16218780]
  53. Biochem Biophys Res Commun. 2016 Sep 23;478(3):1261-7 [PMID: 27553279]
  54. Bioelectrochemistry. 2001 Aug;54(1):91-5 [PMID: 11506979]
  55. Bioelectrochemistry. 2018 Aug;122:123-133 [PMID: 29627664]
  56. Eur J Surg Oncol. 2008 Feb;34(2):232-40 [PMID: 17614247]
  57. Bioelectrochemistry. 2018 Jun;121:135-141 [PMID: 29413863]
  58. J Membr Biol. 1972 Dec 29;10(3):279-90 [PMID: 4667921]
  59. Technol Cancer Res Treat. 2017 Dec;16(6):987-996 [PMID: 28585492]
  60. Electromagn Biol Med. 2020;39(1):1-8 [PMID: 31884821]
  61. Bioelectrochemistry. 2005 Feb;65(2):121-8 [PMID: 15713562]
  62. DNA Cell Biol. 2003 Dec;22(12):785-96 [PMID: 14683589]
  63. Technol Cancer Res Treat. 2007 Feb;6(1):37-48 [PMID: 17241099]
  64. J Vasc Interv Radiol. 2020 Nov;31(11):1765-1771.e15 [PMID: 32978054]
  65. Br J Cancer. 1998 Jun;77(12):2336-42 [PMID: 9649155]
  66. Gene Ther. 1999 Apr;6(4):508-14 [PMID: 10476210]
  67. Biochem Biophys Res Commun. 2003 Oct 17;310(2):286-95 [PMID: 14521908]
  68. Bioelectromagnetics. 2007 Dec;28(8):655-63 [PMID: 17654532]
  69. Int J Surg. 2019 Dec;72:34-42 [PMID: 31618680]
  70. Anticancer Res. 2020 Nov;40(11):6485-6492 [PMID: 33109587]
  71. IEEE Trans Biomed Eng. 2019 Dec;66(12):3526-3533 [PMID: 30908188]
  72. Biophys J. 1990 Oct;58(4):1053-8 [PMID: 2248989]
  73. Bioelectrochemistry. 2018 Feb;119:10-19 [PMID: 28865240]
  74. Bioelectrochemistry. 2018 Feb;119:92-97 [PMID: 28922628]
  75. Int J Cancer. 2009 Jul 15;125(2):438-45 [PMID: 19408306]
  76. IEEE Trans Biomed Eng. 2015 Jan;62(1):4-20 [PMID: 25389236]
  77. IEEE Trans Biomed Eng. 2020 Apr;67(4):1040-1049 [PMID: 31329545]
  78. Bioelectrochemistry. 2021 Aug;140:107822 [PMID: 33915340]
  79. World J Clin Oncol. 2021 May 24;12(5):367-381 [PMID: 34131568]
  80. Technol Cancer Res Treat. 2007 Aug;6(4):307-12 [PMID: 17668938]
  81. BMJ Open. 2017 Sep 01;7(9):e015810 [PMID: 28864693]
  82. IEEE Trans Biomed Eng. 2011 May;58(5):1474-82 [PMID: 21189230]
  83. J Neural Eng. 2008 Jun;5(2):163-74 [PMID: 18441418]
  84. Animals (Basel). 2020 Mar 26;10(4): [PMID: 32225098]
  85. Biophys J. 1991 Aug;60(2):297-306 [PMID: 1912274]
  86. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6417-22 [PMID: 10339602]
  87. Methods Mol Med. 2000;37:99-117 [PMID: 21445731]
  88. PLoS One. 2011 Feb 09;6(2):e17100 [PMID: 21347394]
  89. Bioelectricity. 2020 Dec 1;2(4):382-390 [PMID: 34476367]
  90. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 1):052901 [PMID: 12513540]
  91. Bioelectrochemistry. 2009 Feb;74(2):265-71 [PMID: 18930698]
  92. Bioelectrochemistry. 2001 Aug;54(1):83-90 [PMID: 11506978]
  93. Bioelectrochemistry. 2002 Sep;57(2):167-72 [PMID: 12160614]
  94. Int J Cancer. 2010 Oct 1;127(7):1727-36 [PMID: 20473857]
  95. Biochem Biophys Res Commun. 2006 Oct 20;349(2):643-53 [PMID: 16959217]
  96. Biomed Eng Online. 2011 Nov 21;10:102 [PMID: 22104372]
  97. Anal Biochem. 1987 Nov 1;166(2):342-8 [PMID: 3324822]
  98. IEEE Trans Biomed Eng. 2015 Sep;62(9):2234-43 [PMID: 25850084]
  99. EMBO J. 1982;1(7):841-5 [PMID: 6329708]
  100. Biophys J. 2016 Nov 15;111(10):2286-2295 [PMID: 27851950]
  101. PLoS One. 2016 Jul 25;11(7):e0159434 [PMID: 27454174]
  102. Bioelectrochemistry. 2021 Oct;141:107876 [PMID: 34171507]
  103. Cell Struct Funct. 1987 Apr;12(2):173-80 [PMID: 3594583]
  104. Clin Cancer Res. 2000 Mar;6(3):863-7 [PMID: 10741708]

Word Cloud

Created with Highcharts 10.0.0pulseshapepulsesEPpermeabilizationusedelectroporationelectricapplicationsasymmetricvoltageElectricwidelybiologymedicineindustryfoodprocessingNumerousstudiesindicatepulse-dependentprocessdurationstronglydetermineefficacyprotocolspreciselyplannedtermssizechargemoleculeswilldeliveredcellreversibleirreversiblerectangularsinepolarbipolarcommonlyusagestilllimitedhighlowHV/LVsequencescontextgenedeliveryEP-basedultra-shortjuststartingemergereviewemphasizesimportancerolemembranematterelectroporation?electricfrequency

Similar Articles

Cited By