The application of genome-wide CRISPR-Cas9 screens to dissect the molecular mechanisms of toxins.

Bei Wang, Jun-Zhu Chen, Xue-Qun Luo, Guo-Hui Wan, Yan-Lai Tang, Qiao-Ping Wang
Author Information
  1. Bei Wang: Lab of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China.
  2. Jun-Zhu Chen: Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China.
  3. Xue-Qun Luo: Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China.
  4. Guo-Hui Wan: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
  5. Yan-Lai Tang: Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, PR China.
  6. Qiao-Ping Wang: Lab of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China.

Abstract

Many toxins are life-threatening to both animals and humans. However, specific antidotes are not available for most of those toxins. The molecular mechanisms underlying the toxicology of well-known toxins are not yet fully characterized. Recently, the advance in CRISPR-Cas9 technologies has greatly accelerated the process of revealing the toxic mechanisms of some common toxins on hosts from a genome-wide perspective. The high-throughput CRISPR screen has made it feasible to untangle complicated interactions between a particular toxin and its corresponding targeting tissue(s). In this review, we present an overview of recent advances in molecular dissection of toxins' cytotoxicity by using genome-wide CRISPR screens, summarize the components essential for toxin-specific CRISPR screens, and propose new strategies for future research.

Keywords

References

  1. Trends Cell Biol. 1995 Dec;5(12):441-3 [PMID: 14732022]
  2. Nat Methods. 2014 Aug;11(8):783-784 [PMID: 25075903]
  3. Nat Metab. 2020 Jun;2(6):499-513 [PMID: 32694731]
  4. PLoS Pathog. 2019 Apr 5;15(4):e1007704 [PMID: 30951565]
  5. Cancer Res. 2017 Nov 15;77(22):6330-6339 [PMID: 28954733]
  6. mBio. 2018 Jun 19;9(3): [PMID: 29921669]
  7. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7301-E7310 [PMID: 28811376]
  8. Nat Methods. 2013 Oct;10(10):977-9 [PMID: 23892898]
  9. Nat Methods. 2013 Oct;10(10):973-6 [PMID: 23892895]
  10. Int J Mol Sci. 2019 Jul 11;20(14): [PMID: 31336801]
  11. Nat Methods. 2015 Apr;12(4):326-8 [PMID: 25730490]
  12. Toxicol Sci. 2019 May 1;169(1):108-121 [PMID: 30815697]
  13. Mutat Res Rev Mutat Res. 2015 Apr-Jun;764:31-42 [PMID: 26041264]
  14. Mol Cell Biol. 2006 Nov;26(22):8623-38 [PMID: 16954381]
  15. Nat Methods. 2011 Jul 17;8(9):753-5 [PMID: 21765410]
  16. PLoS Biol. 2018 Nov 27;16(11):e2006951 [PMID: 30481169]
  17. Nature. 2015 Jan 29;517(7536):583-8 [PMID: 25494202]
  18. Science. 2014 Jan 3;343(6166):84-87 [PMID: 24336571]
  19. ACS Chem Biol. 2018 Feb 16;13(2):383-388 [PMID: 28957631]
  20. Cell. 2021 Jan 7;184(1):106-119.e14 [PMID: 33333024]
  21. G3 (Bethesda). 2017 Aug 7;7(8):2719-2727 [PMID: 28655737]
  22. Toxicol Sci. 2019 May 1;169(1):235-245 [PMID: 31059574]
  23. Nat Rev Genet. 2015 May;16(5):299-311 [PMID: 25854182]
  24. Cell. 2015 Jan 15;160(1-2):339-50 [PMID: 25533786]
  25. Nat Biotechnol. 2016 Feb;34(2):184-191 [PMID: 26780180]
  26. Cell Host Microbe. 2020 Sep 9;28(3):402-410.e5 [PMID: 32544461]
  27. Front Cell Dev Biol. 2021 Apr 12;9:634607 [PMID: 33912556]
  28. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579-86 [PMID: 22949671]
  29. Nat Commun. 2021 Feb 11;12(1):961 [PMID: 33574281]
  30. Sci Rep. 2019 Feb 4;9(1):1396 [PMID: 30718897]
  31. Emerg Top Life Sci. 2021 Dec 21;5(6):779-788 [PMID: 34881774]
  32. Signal Transduct Target Ther. 2021 Aug 9;6(1):299 [PMID: 34373448]
  33. Cell Rep. 2019 Apr 9;27(2):599-615.e12 [PMID: 30970261]
  34. Adv Food Nutr Res. 2019;89:297-345 [PMID: 31351529]
  35. mBio. 2020 Mar 24;11(2): [PMID: 32209694]
  36. Genome Biol. 2020 Feb 7;21(1):27 [PMID: 32028983]
  37. iScience. 2019 Jan 25;11:409-424 [PMID: 30660999]
  38. Nature. 2017 Aug 31;548(7669):537-542 [PMID: 28783722]
  39. J Biomol Screen. 2011 Apr;16(4):436-42 [PMID: 21364088]
  40. J Hazard Mater. 2021 May 15;410:124666 [PMID: 33279320]
  41. PLoS Pathog. 2021 Dec 6;17(12):e1010113 [PMID: 34871328]
  42. Prog Mol Biol Transl Sci. 2017;152:69-82 [PMID: 29150005]
  43. Nat Microbiol. 2018 Jun;3(6):708-717 [PMID: 29736038]
  44. Mol Cancer Res. 2021 Aug;19(8):1350-1360 [PMID: 33863812]
  45. Nat Microbiol. 2019 Oct;4(10):1760-1769 [PMID: 31160825]
  46. Cell. 2021 Jan 7;184(1):76-91.e13 [PMID: 33147444]
  47. Genome Biol. 2014;15(12):554 [PMID: 25476604]
  48. Environ Sci Technol. 2016 Oct 4;50(19):10682-10692 [PMID: 27459410]
  49. PLoS Pathog. 2021 Feb 4;17(2):e1009244 [PMID: 33539469]
  50. Nat Commun. 2019 Apr 30;10(1):1655 [PMID: 31040274]
  51. Nat Chem Biol. 2019 Oct;15(10):949-958 [PMID: 31451760]
  52. Foods. 2020 Jan 28;9(2): [PMID: 32012820]
  53. Curr Drug Metab. 2018;19(7):559-567 [PMID: 29119923]
  54. Cell. 2021 Jan 7;184(1):92-105.e16 [PMID: 33147445]
  55. Toxicol Sci. 2020 May 1;175(1):5-18 [PMID: 32105327]
  56. Chemosphere. 2021 Apr;269:128701 [PMID: 33189395]
  57. Nucleic Acids Res. 2020 Dec 16;48(22):e131 [PMID: 33152068]
  58. Nat Protoc. 2017 Apr;12(4):828-863 [PMID: 28333914]
  59. Nature. 2017 Nov 23;551(7681):464-471 [PMID: 29160308]
  60. J Biol Chem. 1996 Mar 22;271(12):6925-32 [PMID: 8636120]
  61. Cell. 2014 Oct 23;159(3):635-46 [PMID: 25307933]
  62. Cell. 2020 Jul 23;182(2):345-356.e16 [PMID: 32589945]
  63. Cell. 2022 Mar 31;185(7):1157-1171.e22 [PMID: 35259335]
  64. Dev Cell. 2011 Aug 16;21(2):231-44 [PMID: 21782526]
  65. Pharmacogenomics J. 2020 Jun;20(3):355-366 [PMID: 31792369]
  66. Arch Toxicol. 2020 Oct;94(10):3381-3407 [PMID: 32852569]
  67. Proc Natl Acad Sci U S A. 2021 Jan 26;118(4): [PMID: 33483422]
  68. Expert Rev Clin Pharmacol. 2019 May;12(5):407-442 [PMID: 30916581]
  69. Cell. 2015 Dec 3;163(6):1515-26 [PMID: 26627737]
  70. Clin Toxicol (Phila). 2021 Dec;59(12):1282-1501 [PMID: 34890263]
  71. Nature. 2016 Apr 20;533(7603):420-4 [PMID: 27096365]
  72. PLoS One. 2012;7(8):e43025 [PMID: 22905196]
  73. Nat Biotechnol. 2014 Mar;32(3):279-284 [PMID: 24463574]
  74. Trends Cancer. 2018 May;4(5):349-358 [PMID: 29709259]
  75. Rev Assoc Med Bras (1992). 2020 Jan 13;66Suppl 1(Suppl 1):s82-s90 [PMID: 31939540]
  76. Science. 2014 Jan 3;343(6166):80-4 [PMID: 24336569]
  77. Toxicon. 2019 Oct;168:140 [PMID: 31326507]
  78. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  79. Int J Mol Sci. 2021 May 06;22(9): [PMID: 34066520]
  80. Prog Mol Biol Transl Sci. 2012;112:373-415 [PMID: 22974748]
  81. Nat Chem Biol. 2017 Dec;13(12):1274-1279 [PMID: 29058724]
  82. Cancer Cell. 2018 Mar 12;33(3):386-400.e5 [PMID: 29478914]
  83. Genome Biol. 2015 Dec 15;16:280 [PMID: 26671237]
  84. J Biol Chem. 2020 Mar 27;295(13):4341-4349 [PMID: 32029474]
  85. Nature. 2016 Oct 20;538(7625):350-355 [PMID: 27680706]
  86. Toxins (Basel). 2020 Feb 06;12(2): [PMID: 32041354]
  87. Comput Struct Biotechnol J. 2019 Nov 29;18:35-44 [PMID: 31890142]
  88. Toxins (Basel). 2020 Sep 04;12(9): [PMID: 32899816]
  89. Sci Rep. 2016 Apr 12;6:24242 [PMID: 27066838]
  90. Gene. 2017 Sep 5;627:212-221 [PMID: 28625564]
  91. Crit Care. 2017 Nov 14;21(1):276 [PMID: 29137682]
  92. Cell. 2009 Nov 25;139(5):945-56 [PMID: 19945378]
  93. EXS. 2010;100:123-75 [PMID: 20358683]
  94. Infect Immun. 2020 Mar 23;88(4): [PMID: 31988174]
  95. Front Bioeng Biotechnol. 2021 Jul 07;9:669434 [PMID: 34307318]
  96. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  97. Mol Syst Biol. 2011 Mar 15;7:474 [PMID: 21407211]
  98. Cell. 2015 Mar 12;160(6):1246-60 [PMID: 25748654]

Word Cloud

Created with Highcharts 10.0.0CRISPRtoxinsCRISPR-Cas9molecularmechanismsgenome-widescreensscreentoxinBaseEditorGeCKOKnockoutGenome-wideManylife-threateninganimalshumansHoweverspecificantidotesavailableunderlyingtoxicologywell-knownyetfullycharacterizedRecentlyadvancetechnologiesgreatlyacceleratedprocessrevealingtoxiccommonhostsperspectivehigh-throughputmadefeasibleuntanglecomplicatedinteractionsparticularcorrespondingtargetingtissuesreviewpresentoverviewrecentadvancesdissectiontoxins'cytotoxicityusingsummarizecomponentsessentialtoxin-specificproposenewstrategiesfutureresearchapplicationdissectAAPCCAmericanAssociationPoisonControlCentersABEAdenineBacterialCBECytosineCISRPRClusteredRegularlyInterspacedShortPalindromicRepeatsCRISPRaactivationCRISPRiinterferenceDSBDouble-StrandBreakGOFGain-of-functionPooledLibraryLOFLoss-of-functionMAGeCKModel-basedAnalysisMechanismMycotoxinNGSNext-GenerationSequencingNHEJNon-HomologousEndJoiningToxicantToxinVenomsgRNAsingleguideRNA

Similar Articles

Cited By