Phylogenetic resolution of the fly superfamily Ephydroidea-Molecular systematics of the enigmatic and diverse relatives of Drosophilidae.

Isaac S Winkler, Ashley H Kirk-Spriggs, Keith M Bayless, John Soghigian, Rudolf Meier, Thomas Pape, David K Yeates, A Bernardo Carvalho, Robert S Copeland, Brian M Wiegmann
Author Information
  1. Isaac S Winkler: Department of Biology, Cornell College, Mount Vernon, Iowa, United States of America.
  2. Ashley H Kirk-Spriggs: African Natural History Research Trust, Leominster, Herefordshire, United Kingdom.
  3. Keith M Bayless: Australian National Insect Collection, CSIRO National Research Collection, Australia (NRCA), Acton, Canberra, ACT, Australia.
  4. John Soghigian: Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
  5. Rudolf Meier: Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
  6. Thomas Pape: Natural History Museum of Denmark, Copenhagen, Denmark.
  7. David K Yeates: Australian National Insect Collection, CSIRO National Research Collection, Australia (NRCA), Acton, Canberra, ACT, Australia.
  8. A Bernardo Carvalho: Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. ORCID
  9. Robert S Copeland: International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.
  10. Brian M Wiegmann: Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Abstract

The schizophoran superfamily Ephydroidea (Diptera: Cyclorrhapha) includes eight families, ranging from the well-known vinegar flies (Drosophilidae) and shore flies (Ephydridae), to several small, relatively unusual groups, the phylogenetic placement of which has been particularly challenging for systematists. An extraordinary diversity in life histories, feeding habits and morphology are a hallmark of fly biology, and the Ephydroidea are no exception. Extreme specialization can lead to "orphaned" taxa with no clear evidence for their phylogenetic position. To resolve relationships among a diverse sample of Ephydroidea, including the highly modified flies in the families Braulidae and Mormotomyiidae, we conducted phylogenomic sampling. Using exon capture from Anchored Hybrid Enrichment and transcriptomics to obtain 320 orthologous nuclear genes sampled for 32 species of Ephydroidea and 11 outgroups, we evaluate a new phylogenetic hypothesis for representatives of the superfamily. These data strongly support monophyly of Ephydroidea with Ephydridae as an early branching radiation and the placement of Mormotomyiidae as a family-level lineage sister to all remaining families. We confirm placement of Cryptochetidae as sister taxon to a large clade containing both Drosophilidae and Braulidae-the latter a family of honeybee ectoparasites. Our results reaffirm that sampling of both taxa and characters is critical in hyperdiverse clades and that these factors have a major influence on phylogenomic reconstruction of the history of the schizophoran fly radiation.

Associated Data

Dryad | 10.5061/dryad.fn2z34txf

References

  1. J Hered. 2019 Jan 7;110(1):46-57 [PMID: 30107510]
  2. PLoS One. 2008 Apr 09;3(4):e1942 [PMID: 18398468]
  3. Annu Rev Microbiol. 2015;69:167-83 [PMID: 26195306]
  4. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  5. Proc Biol Sci. 2019 Jan 30;286(1895):20182076 [PMID: 30963947]
  6. Biol Lett. 2016 Jul;12(7): [PMID: 27436119]
  7. BMC Biol. 2021 Feb 8;19(1):23 [PMID: 33557827]
  8. BMC Evol Biol. 2020 Nov 2;20(1):141 [PMID: 33138771]
  9. Curr Biol. 2007 Sep 4;17(17):R743-6 [PMID: 17803919]
  10. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  11. Plant Physiol. 2021 Sep 4;187(1):32-51 [PMID: 35237798]
  12. BMC Bioinformatics. 2018 May 8;19(Suppl 6):153 [PMID: 29745866]
  13. Genet Res (Camb). 2010 Feb;92(1):25-38 [PMID: 20433773]
  14. Nucleic Acids Res. 2019 Jan 8;47(D1):D807-D811 [PMID: 30395283]
  15. PLoS Biol. 2015 Apr 16;13(4):e1002078 [PMID: 25879221]
  16. Mol Phylogenet Evol. 2019 Jan;130:233-243 [PMID: 30366088]
  17. Cladistics. 2021 Jun;37(3):276-297 [PMID: 34478201]
  18. Bioinformatics. 2009 Jun 1;25(11):1422-3 [PMID: 19304878]
  19. Mol Phylogenet Evol. 2021 May;158:107061 [PMID: 33387647]
  20. J Invertebr Pathol. 2021 Sep;184:107640 [PMID: 34166714]
  21. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  22. Brief Bioinform. 2012 Jan;13(1):122-34 [PMID: 21436145]
  23. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  24. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  25. Cladistics. 2019 Dec;35(6):605-622 [PMID: 34618931]
  26. Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.prot5448 [PMID: 20516186]
  27. BMC Evol Biol. 2016 Jun 29;16(1):143 [PMID: 27357120]
  28. Curr Biol. 2022 Jan 10;32(1):111-123.e5 [PMID: 34788634]
  29. Mol Ecol. 2017 Oct;26(19):5043-5057 [PMID: 28746736]
  30. Zootaxa. 2016 Jul 21;4139(3):301-44 [PMID: 27470807]
  31. Curr Opin Insect Sci. 2019 Feb;31:139-145 [PMID: 31109667]
  32. Science. 2014 Nov 7;346(6210):763-7 [PMID: 25378627]
  33. BMC Biol. 2009 Jun 24;7:34 [PMID: 19552814]
  34. Syst Biol. 2012 Oct;61(5):727-44 [PMID: 22605266]
  35. BMC Evol Biol. 2010 Nov 09;10:343 [PMID: 21062453]
  36. Annu Rev Microbiol. 2020 Sep 8;74:291-313 [PMID: 32660385]
  37. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5690-5 [PMID: 21402926]
  38. Appl Environ Microbiol. 1999 Apr;65(4):1477-82 [PMID: 10103240]
  39. Zootaxa. 2013;3684:1-166 [PMID: 26146691]
  40. Genome Biol Evol. 2021 Aug 3;13(8): [PMID: 34343293]
  41. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3517-21 [PMID: 4530320]
  42. Zookeys. 2017 Dec 29;(725):49-69 [PMID: 29430204]
  43. Syst Biol. 2016 Nov;65(6):997-1008 [PMID: 27121966]
  44. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  45. Mol Phylogenet Evol. 2010 Sep;56(3):918-30 [PMID: 20399874]
  46. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  47. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3026-31 [PMID: 25624509]
  48. Nature. 2020 Mar;579(7799):402-408 [PMID: 32132713]
  49. PLoS One. 2021 Feb 25;16(2):e0247068 [PMID: 33630885]
  50. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 [PMID: 18440982]
  51. Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4771-6 [PMID: 27044093]
  52. BMC Bioinformatics. 2017 Feb 16;18(1):111 [PMID: 28209129]

Grants

  1. /Wellcome Trust
  2. 207486/Z/17/Z/Wellcome Trust

MeSH Term

Acetic Acid
Animals
Drosophilidae
Phylogeny

Chemicals

Acetic Acid

Word Cloud

Created with Highcharts 10.0.0EphydroideasuperfamilyfamiliesfliesDrosophilidaephylogeneticplacementflyschizophoranEphydridaetaxadiverseMormotomyiidaephylogenomicsamplingradiationsisterDiptera:Cyclorrhaphaincludeseightrangingwell-knownvinegarshoreseveralsmallrelativelyunusualgroupsparticularlychallengingsystematistsextraordinarydiversitylifehistoriesfeedinghabitsmorphologyhallmarkbiologyexceptionExtremespecializationcanlead"orphaned"clearevidencepositionresolverelationshipsamongsampleincludinghighlymodifiedBraulidaeconductedUsingexoncaptureAnchoredHybridEnrichmenttranscriptomicsobtain320orthologousnucleargenessampled32species11outgroupsevaluatenewhypothesisrepresentativesdatastronglysupportmonophylyearlybranchingfamily-levellineageremainingconfirmCryptochetidaetaxonlargecladecontainingBraulidae-thelatterfamilyhoneybeeectoparasitesresultsreaffirmcharacterscriticalhyperdiversecladesfactorsmajorinfluencereconstructionhistoryPhylogeneticresolutionEphydroidea-Molecularsystematicsenigmaticrelatives

Similar Articles

Cited By