Symptomatic and asymptomatic domoic acid exposure in zebrafish (Danio rerio) revealed distinct non-overlapping gene expression patterns in the brain.

Alia S Hidayat, Kathi A Lefebvre, James MacDonald, Theo Bammler, Neelakanteswar Aluru
Author Information
  1. Alia S Hidayat: MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA, USA; Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. Electronic address: ahidayat@mit.edu.
  2. Kathi A Lefebvre: Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA.
  3. James MacDonald: Department of Environmental and Occupational Health, University of Washington, Seattle, WA, USA.
  4. Theo Bammler: Department of Environmental and Occupational Health, University of Washington, Seattle, WA, USA.
  5. Neelakanteswar Aluru: Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

Abstract

Domoic acid (DA) is a naturally produced neurotoxin synthesized by marine diatoms in the genus Pseudo-nitzschia. DA accumulates in filter-feeders such as shellfish, and can cause severe neurotoxicity when contaminated seafood is ingested, resulting in Amnesic Shellfish Poisoning (ASP) in humans. Overt clinical signs of neurotoxicity include seizures and disorientation. ASP is a significant public health concern, and though seafood regulations have effectively minimized the human risk of severe acute DA poisoning, the effects of exposure at asymptomatic levels are poorly understood. The objective of this study was to determine the effects of exposure to symptomatic and asymptomatic doses of DA on gene expression patterns in the zebrafish brain. We exposed adult zebrafish to either a symptomatic (1.1 ± 0.2 μg DA/g fish) or an asymptomatic (0.31 ± 0.03 µg DA/g fish) dose of DA by intracelomic injection and sampled at 24, 48 and 168 h post-injection. Transcriptional profiling was done using Agilent and Affymetrix microarrays. Our analysis revealed distinct, non-overlapping changes in gene expression between the two doses. We found that the majority of transcriptional changes were observed at 24 h post-injection with both doses. Interestingly, asymptomatic exposure produced more persistent transcriptional effects - in response to symptomatic dose exposure, we observed only one differentially expressed gene one week after exposure, compared to 26 in the asymptomatic dose at the same time (FDR <0.05). GO term analysis revealed that symptomatic DA exposure affected genes associated with peptidyl proline modification and retinoic acid metabolism. Asymptomatic exposure caused differential expression of genes that were associated with GO terms including circadian rhythms and visual system, and also the neuroactive ligand-receptor signaling KEGG pathway. Overall, these results suggest that transcriptional responses are specific to the DA dose and that asymptomatic exposure can cause long-term changes. Further studies are needed to characterize the potential downstream neurobehavioral impacts of DA exposure.

Keywords

References

  1. Eur J Neurosci. 1993 Apr 1;5(4):368-81 [PMID: 7903187]
  2. eNeuro. 2019 Mar 1;6(1): [PMID: 30963102]
  3. Elife. 2020 Sep 21;9: [PMID: 32955436]
  4. Bioinformatics. 2007 Oct 15;23(20):2700-7 [PMID: 17720982]
  5. Learn Mem. 2015 Aug 18;22(9):426-37 [PMID: 26286653]
  6. Proc Biol Sci. 2008 Feb 7;275(1632):267-76 [PMID: 18006409]
  7. Harmful Algae. 2016 Jul;57(B):20-25 [PMID: 27746706]
  8. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14712-7 [PMID: 17785416]
  9. Dev Comp Immunol. 2012 Apr;36(4):629-37 [PMID: 22067742]
  10. J Biol Chem. 2015 Feb 13;290(7):4367-82 [PMID: 25544291]
  11. Bioinformatics. 2010 Sep 1;26(17):2176-82 [PMID: 20610611]
  12. Annu Rev Biochem. 2016 Jun 2;85:103-32 [PMID: 27023846]
  13. Harmful Algae. 2017 Apr;64:20-29 [PMID: 28427569]
  14. Biochem Cell Biol. 2014 Dec;92(6):431-40 [PMID: 25275559]
  15. Br J Pharmacol. 2013 Jun;169(3):512-23 [PMID: 23517078]
  16. Nucleic Acids Res. 2002 May 1;30(9):e36 [PMID: 11972351]
  17. Dev Biol. 2015 Sep 1;405(1):47-55 [PMID: 26116175]
  18. J Neurobiol. 2003 Jan;54(1):148-60 [PMID: 12486702]
  19. J Neurosci Res. 2001 Oct 15;66(2):177-90 [PMID: 11592113]
  20. Nature. 2000 Jan 6;403(6765):80-4 [PMID: 10638756]
  21. Peptides. 2012 Sep;37(1):171-3 [PMID: 22820556]
  22. Nat Rev Neurosci. 2007 Oct;8(10):755-65 [PMID: 17882253]
  23. J Neurophysiol. 1996 Sep;76(3):1611-21 [PMID: 8890280]
  24. Neurotoxicology. 2019 May;72:114-124 [PMID: 30826346]
  25. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  26. J Neurochem. 1997 Aug;69(2):693-703 [PMID: 9231729]
  27. Brain Res. 1997 Mar 21;751(2):281-8 [PMID: 9099816]
  28. J Neurosci. 1996 Oct 1;16(19):6125-33 [PMID: 8815895]
  29. Toxicon. 2010 Aug 15;56(2):218-30 [PMID: 19505488]
  30. Biol Proced Online. 2006;8:175-93 [PMID: 17242735]
  31. Neuroscientist. 2004 Oct;10(5):409-21 [PMID: 15359008]
  32. Geophys Res Lett. 2016 Oct 16;43(19):10366-10376 [PMID: 27917011]
  33. Biomed J. 2017 Oct;40(5):245-256 [PMID: 29179879]
  34. Nature. 2011 Jun 19;476(7360):336-40 [PMID: 21685888]
  35. J Wildl Dis. 2009 Jan;45(1):109-21 [PMID: 19204340]
  36. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  37. Free Radic Biol Med. 2012 Feb 1;52(3):646-659 [PMID: 22178976]
  38. J Neurochem. 2011 Sep;118(6):1113-23 [PMID: 21749375]
  39. Front Neuroendocrinol. 1999 Jul;20(3):157-98 [PMID: 10433861]
  40. BMC Pharmacol. 2001;1:7 [PMID: 11686853]
  41. N Engl J Med. 1990 Jun 21;322(25):1775-80 [PMID: 1971709]
  42. Nucleic Acids Res. 2002 Feb 15;30(4):e15 [PMID: 11842121]
  43. Pharmacol Biochem Behav. 1992 Jan;41(1):211-4 [PMID: 1539071]
  44. Neuropsychopharmacology. 2016 Jan;41(1):261-74 [PMID: 26250598]
  45. Neurotoxicology. 2016 Jan;52:23-33 [PMID: 26439099]
  46. Vision Res. 2020 Jan;166:43-51 [PMID: 31855667]
  47. Bioinformatics. 2010 Oct 1;26(19):2363-7 [PMID: 20688976]
  48. Toxicol Sci. 2009 Sep;111(1):140-50 [PMID: 19564213]
  49. Physiol Res. 2014;63(3):369-76 [PMID: 24564603]
  50. Genome Biol. 2004;5(10):R80 [PMID: 15461798]
  51. Toxins (Basel). 2019 May 23;11(5): [PMID: 31126088]
  52. Neurosci Biobehav Rev. 2020 Nov;118:134-162 [PMID: 32712278]
  53. Sci Rep. 2019 Jan 17;9(1):196 [PMID: 30655599]
  54. Environ Int. 2017 Apr;101:70-79 [PMID: 28109640]
  55. Biotechniques. 1999 Jan;26(1):112-22, 124-5 [PMID: 9894600]
  56. Neurotoxicol Teratol. 1996 Nov-Dec;18(6):659-70 [PMID: 8947943]
  57. Toxicol Sci. 2009 Jan;107(1):65-77 [PMID: 18936300]
  58. Aquat Toxicol. 2014 Oct;155:151-9 [PMID: 25033243]
  59. Neurotoxicol Teratol. 2019 Mar - Apr;72:10-21 [PMID: 30615984]
  60. Dev Biol. 2010 Feb 1;338(1):1-14 [PMID: 19874812]
  61. Toxins (Basel). 2018 Feb 28;10(3): [PMID: 29495583]
  62. Nat Neurosci. 1998 Sep;1(5):366-73 [PMID: 10196525]
  63. Science. 1994 Dec 9;266(5191):1713-7 [PMID: 7527589]
  64. Cancer Cell. 2005 Aug;8(2):155-67 [PMID: 16098468]
  65. Dev Biol. 2005 Feb 15;278(2):415-27 [PMID: 15680360]
  66. Methods. 2003 Dec;31(4):265-73 [PMID: 14597310]
  67. Nucleic Acids Res. 2009 Apr;37(6):e45 [PMID: 19237396]
  68. PLoS One. 2012;7(5):e36213 [PMID: 22567140]

Grants

  1. P01 ES028938/NIEHS NIH HHS
  2. P30 ES007033/NIEHS NIH HHS
  3. R01 ES021930/NIEHS NIH HHS
  4. R01 ES030319/NIEHS NIH HHS

MeSH Term

Animals
Humans
Zebrafish
Neurotoxins
Ligands
Water Pollutants, Chemical
Kainic Acid
Brain
Diatoms
Gene Expression
Tretinoin
Proline

Chemicals

domoic acid
Neurotoxins
Ligands
Water Pollutants, Chemical
Kainic Acid
Tretinoin
Proline