Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny-Ålesund, Svalbard.

Deokjoo Son, Eun Ju Lee
Author Information
  1. Deokjoo Son: College of Education Department of Science Education, Dankook University, Gyeonggi-do 16890, Republic of Korea.
  2. Eun Ju Lee: Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.

Abstract

Understanding soil microbial community structure in the Arctic is essential for predicting the impact of climate change on interactions between organisms living in polar environments. The hypothesis of the present study was that soil microbial communities and soil chemical characteristics would vary depending on their associated plant species and local environments in Arctic mature soils. We analyzed soil bacterial communities and soil chemical characteristics from soil without vegetation (bare soil) and rhizosphere soil of three Arctic plants ( [L.] D. Don, L. and [L.] Jacq.) in different local environments (coal-mined site and seashore-adjacent site). We did not observe any clear differences in microbial community structure in samples belonging to different plant rhizospheres; however, samples from different environmental sites had distinct microbial community structure. The samples from coal-mined site had a relatively higher abundance of Bacteroidetes and Firmicutes. On the other hand, Acidobacteria was more prevalent in seashore-adjacent samples. The relative abundance of Proteobacteria and Acidobacteria decreased toward higher soil pH, whereas that of Bacteroidetes and Firmicutes was positively correlated with soil pH. Our results suggest that soil bacterial community dissimilarity can be driven by spatial heterogeneity in deglaciated mature soil. Furthermore, these results indicate that soil microbial composition and relative abundance are more affected by soil pH, an abiotic factor, than plant species, a biotic factor.

Keywords

References

  1. Ecology. 2007 Jun;88(6):1354-64 [PMID: 17601128]
  2. Oecologia. 2000 Apr;123(1):108-115 [PMID: 28308735]
  3. World J Microbiol Biotechnol. 2022 Jan 6;38(2):28 [PMID: 34989908]
  4. Environ Monit Assess. 2013 Apr;185(4):2929-38 [PMID: 22810380]
  5. Front Microbiol. 2021 Feb 16;12:628792 [PMID: 33664717]
  6. FEMS Microbiol Ecol. 2019 Sep 1;95(9): [PMID: 31429869]
  7. Sci Total Environ. 2019 Mar 25;658:1209-1218 [PMID: 30677983]
  8. PLoS One. 2013 Jun 18;8(6):e66103 [PMID: 23824063]
  9. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1342-6 [PMID: 16428292]
  10. J Microbiol Biotechnol. 2016 May 28;26(5):883-90 [PMID: 26869600]
  11. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  12. Nucleic Acids Res. 2003 Jan 1;31(1):442-3 [PMID: 12520046]
  13. Appl Environ Microbiol. 2000 Jan;66(1):345-51 [PMID: 10618246]
  14. FEMS Microbiol Ecol. 2012 Mar;79(3):728-40 [PMID: 22098093]
  15. ISME J. 2010 Aug;4(8):989-1001 [PMID: 20357834]
  16. Front Microbiol. 2015 Apr 30;6:399 [PMID: 25983731]
  17. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  18. J Microbiol. 2019 Jul;57(7):550-561 [PMID: 31073895]
  19. FEMS Microbiol Ecol. 2007 Feb;59(2):452-65 [PMID: 17328122]
  20. Environ Microbiol. 2010 Nov;12(11):2998-3006 [PMID: 20561020]
  21. PLoS One. 2012;7(8):e43093 [PMID: 22905208]
  22. PLoS One. 2014 Aug 21;9(8):e105592 [PMID: 25144201]
  23. ISME J. 2009 Nov;3(11):1258-68 [PMID: 19587774]
  24. PeerJ. 2017 Dec 19;5:e4178 [PMID: 29302394]
  25. mSystems. 2020 Jul 28;5(4): [PMID: 32723794]
  26. Sci Rep. 2017 Mar 28;7:45289 [PMID: 28349918]
  27. Environ Microbiol Rep. 2018 Dec;10(6):611-625 [PMID: 30028082]
  28. Microb Ecol. 2013 Feb;65(2):405-14 [PMID: 22983497]
  29. Front Microbiol. 2016 Jul 28;7:1170 [PMID: 27516761]
  30. Biom J. 2008 Dec;50(6):971-82 [PMID: 19067331]
  31. Nat Rev Microbiol. 2012 May 14;10(7):497-506 [PMID: 22580365]
  32. FEMS Microbiol Ecol. 2017 Jan;93(1): [PMID: 27756770]
  33. FEMS Microbiol Ecol. 2022 Aug 1;98(8): [PMID: 35776963]
  34. Microb Ecol. 2005 Oct;50(3):396-407 [PMID: 16328651]
  35. FEMS Microbiol Ecol. 2007 Feb;59(2):428-35 [PMID: 17313585]
  36. ISME J. 2018 May;12(5):1188-1198 [PMID: 29335640]
  37. J Microbiol Biotechnol. 2021 Nov 28;31(11):1526-1532 [PMID: 34528914]
  38. J Environ Radioact. 2004;71(2):101-14 [PMID: 14567946]
  39. Annu Rev Phytopathol. 2004;42:243-70 [PMID: 15283667]
  40. ISME J. 2010 Oct;4(10):1340-51 [PMID: 20445636]
  41. Glob Chang Biol. 2018 Apr;24(4):1614-1625 [PMID: 29155464]
  42. Appl Environ Microbiol. 2013 Jul;79(13):4031-40 [PMID: 23624469]

MeSH Term

Soil
Soil Microbiology
Svalbard
Rhizosphere
Acidobacteria
Microbiota
Plants
Bacteria
Firmicutes
Coal
RNA, Ribosomal, 16S

Chemicals

Soil
Coal
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0soilmicrobialArcticcommunitysamplespHstructureenvironmentsplantdifferentsiteabundanceAcidobacteriacommunitieschemicalcharacteristicsspecieslocalmaturebacterial[L]coal-minedseashore-adjacenthigherBacteroidetesFirmicutesrelativeProteobacteriaresultsspatialheterogeneityfactorSoilUnderstandingessentialpredictingimpactclimatechangeinteractionsorganismslivingpolarhypothesispresentstudyvarydependingassociatedsoilsanalyzedwithoutvegetationbarerhizospherethreeplantsDDonLJacqobservecleardifferencesbelongingrhizosphereshoweverenvironmentalsitesdistinctrelativelyhandprevalentdecreasedtowardwhereaspositivelycorrelatedsuggestdissimilaritycandrivendeglaciatedFurthermoreindicatecompositionaffectedabioticbioticMicrobialCommunitiesAssociatedThreePlantsDifferentLocalEnvironmentsNy-ÅlesundSvalbardhigh

Similar Articles

Cited By