Short-term transcriptomic changes in the mouse neural tube induced by an acute alcohol exposure.

Karen E Boschen, Melina C Steensen, Jeremy M Simon, Scott E Parnell
Author Information
  1. Karen E Boschen: Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  2. Melina C Steensen: Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  3. Jeremy M Simon: Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  4. Scott E Parnell: Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States. Electronic address: sparnell@med.unc.edu.

Abstract

Alcohol exposure during the formation and closure of the neural tube, or neurulation (embryonic day [E] 8-10 in mice; ∼4th week of human pregnancy), perturbs development of midline brain structures and significantly disrupts gene expression in the rostroventral neural tube (RVNT). Previously, alcohol exposure during neurulation was found to alter gene pathways related to cell proliferation, p53 signaling, ribosome biogenesis, immune signaling, organogenesis, and cell migration 6 or 24 h after administration. Our current study expands upon this work by investigating short-term gene expression changes in the RVNT following a single binge-like alcohol exposure during neurulation. Female C57BL/6J mice were administered a single dose of 2.9 g/kg alcohol or vehicle on E9.0 to target mid-neurulation. The RVNTs of stage-matched embryos were collected 2 or 4 h after exposure and processed for RNA-seq. Functional profiling was performed with g:Profiler, as well as with the CiliaCarta and DisGeNet databases. Two hours following E9.0 alcohol exposure, 650 genes in the RVNT were differentially expressed. Functional enrichment analysis revealed that pathways related to cellular metabolism, gene expression, cell cycle, organogenesis, and Hedgehog signaling were down-regulated, and pathways related to cellular stress response, p53 signaling, and hypoxia were up-regulated by alcohol. Four hours after alcohol exposure, 225 genes were differentially expressed. Biological processes related to metabolism, RNA binding, ribosome biogenesis, and methylation were down-regulated, while protein localization and binding, autophagy, and intracellular signaling pathways were up-regulated. Two hours after alcohol exposure, the differentially expressed genes were associated with disease terms related to eye and craniofacial development and anoxia. These data provide further information regarding the biological functions targeted by alcohol exposure during neurulation in regions of the neural tube that give rise to alcohol-sensitive midline brain structures. Disruption of these gene pathways contributes to the craniofacial and brain malformations associated with prenatal alcohol exposure.

Keywords

References

  1. Cancer Res. 2003 Mar 15;63(6):1153-6 [PMID: 12649167]
  2. Alcohol Clin Exp Res. 2001 Oct;25(10):1523-35 [PMID: 11696674]
  3. Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595 [PMID: 30321428]
  4. Elife. 2019 Sep 23;8: [PMID: 31545170]
  5. Birth Defects Res A Clin Mol Teratol. 2008 Apr;82(4):224-31 [PMID: 18338389]
  6. Neurotoxicol Teratol. 2013 Sep-Oct;39:77-83 [PMID: 23911654]
  7. Birth Defects Res A Clin Mol Teratol. 2007 Jul;79(7):513-23 [PMID: 17393481]
  8. J Neurosci. 2006 Jul 5;26(27):7257-64 [PMID: 16822983]
  9. Biochim Biophys Acta. 2010 Sep;1803(9):1043-9 [PMID: 20493909]
  10. PLoS Genet. 2016 Nov 1;12(11):e1006351 [PMID: 27802276]
  11. PLoS One. 2019 May 16;14(5):e0216705 [PMID: 31095607]
  12. J Biol Chem. 2000 Jul 28;275(30):22627-30 [PMID: 10930422]
  13. J Biol Chem. 2012 Jun 29;287(27):22838-53 [PMID: 22589537]
  14. EMBO J. 1997 Jun 16;16(12):3563-71 [PMID: 9218798]
  15. Biochem Biophys Res Commun. 2004 Mar 12;315(3):652-8 [PMID: 14975750]
  16. Alcohol Clin Exp Res. 2014 Jul;38(7):1874-82 [PMID: 24962712]
  17. Exp Neurol. 1998 Dec;154(2):418-29 [PMID: 9878179]
  18. J Biomed Sci. 2016 Aug 19;23(1):61 [PMID: 27542736]
  19. Alcohol Clin Exp Res. 2021 Oct;45(10):1965-1979 [PMID: 34581462]
  20. Alcohol Clin Exp Res. 2020 Aug;44(8):1540-1550 [PMID: 32557641]
  21. Alcohol Clin Exp Res. 2009 Jun;33(6):1001-11 [PMID: 19302087]
  22. Reprod Toxicol. 2021 Oct;105:136-147 [PMID: 34492310]
  23. PLoS One. 2014 Feb 19;9(2):e89448 [PMID: 24586787]
  24. Autophagy. 2013 Dec;9(12):1937-54 [PMID: 24121476]
  25. Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198 [PMID: 31066453]
  26. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  27. Exp Cell Res. 2014 Jul 1;325(1):27-37 [PMID: 24486447]
  28. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  29. Dis Model Mech. 2021 Jun 1;14(6): [PMID: 34137816]
  30. Birth Defects Res. 2017 Jul 3;109(11):860-865 [PMID: 28504423]
  31. Nucleic Acids Res. 2014 Dec 1;42(21): [PMID: 25294822]
  32. PLoS One. 2017 Jan 3;12(1):e0169351 [PMID: 28046103]
  33. J Neuropathol Exp Neurol. 2009 Jul;68(7):747-56 [PMID: 19535997]
  34. Hum Mol Genet. 2010 Apr 15;19(8):1577-92 [PMID: 20106874]
  35. Alcohol Alcohol. 2008 May-Jun;43(3):261-73 [PMID: 18283098]
  36. Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503 [PMID: 31691815]
  37. Int J Mol Sci. 2013 Mar 15;14(3):6044-66 [PMID: 23502468]
  38. Eur J Cell Biol. 2014 Jan-Feb;93(1-2):36-41 [PMID: 24342719]
  39. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  40. JAMA Neurol. 2013 Nov;70(11):1403-10 [PMID: 24042580]
  41. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11318-23 [PMID: 11572983]
  42. Nucleic Acids Res. 2019 Jan 8;47(D1):D1018-D1027 [PMID: 30476213]
  43. J Cell Sci. 2003 Apr 1;116(Pt 7):1319-26 [PMID: 12615973]
  44. Alcohol. 2017 May;60:67-75 [PMID: 28187949]
  45. Drug Alcohol Depend. 1984 Sep;14(1):1-10 [PMID: 6386408]
  46. Cancer Res. 2007 May 15;67(10):4671-8 [PMID: 17510393]
  47. Alcohol Clin Exp Res. 2018 Nov;42(11):2136-2143 [PMID: 30129265]
  48. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  49. Behav Brain Res. 2016 Sep 15;311:70-80 [PMID: 27185739]
  50. Oncogene. 2010 Jul 29;29(30):4253-60 [PMID: 20498634]
  51. Nucleic Acids Res. 2020 Jan 8;48(D1):D845-D855 [PMID: 31680165]
  52. Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655 [PMID: 29145629]
  53. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338 [PMID: 30395331]
  54. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  55. Behav Brain Res. 2018 Feb 15;338:173-184 [PMID: 29107713]
  56. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  57. Front Neuroendocrinol. 2012 Aug;33(3):267-86 [PMID: 22982535]
  58. J Cell Sci. 2004 Apr 1;117(Pt 9):1785-94 [PMID: 15075239]
  59. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5683-8 [PMID: 23431142]
  60. J Cell Physiol. 2002 Sep;192(3):327-38 [PMID: 12124778]

Grants

  1. F32 AA026479/NIAAA NIH HHS
  2. U01 AA021651/NIAAA NIH HHS
  3. P30 NS045892/NINDS NIH HHS
  4. R01 AA026068/NIAAA NIH HHS
  5. U54 HD079124/NICHD NIH HHS
  6. K99 AA028273/NIAAA NIH HHS

MeSH Term

Animals
Female
Mice
Pregnancy
Ethanol
Hedgehog Proteins
Mice, Inbred C57BL
Neural Tube
Prenatal Exposure Delayed Effects
Transcriptome
Tumor Suppressor Protein p53

Chemicals

Ethanol
Hedgehog Proteins
Tumor Suppressor Protein p53

Word Cloud

Created with Highcharts 10.0.0alcoholexposuregenepathwaysrelatedsignalingneuraltubeneurulationdevelopmentbrainexpressionRVNTcellhoursgenesdifferentiallyexpressedmicemidlinestructuresp53ribosomebiogenesisorganogenesischangesfollowingsingle2E90FunctionalTwocellularmetabolismdown-regulatedup-regulatedbindingassociatedcraniofacialAlcoholformationclosureembryonicday[E]8-10∼4thweekhumanpregnancyperturbssignificantlydisruptsrostroventralPreviouslyfoundalterproliferationimmunemigration624 hadministrationcurrentstudyexpandsuponworkinvestigatingshort-termbinge-likeFemaleC57BL/6Jadministereddose9 g/kgvehicletargetmid-neurulationRVNTsstage-matchedembryoscollected4 hprocessedRNA-seqprofilingperformedg:ProfilerwellCiliaCartaDisGeNetdatabases650enrichmentanalysisrevealedcycleHedgehogstressresponsehypoxiaFour225BiologicalprocessesRNAmethylationproteinlocalizationautophagyintracellulardiseasetermseyeanoxiadataprovideinformationregardingbiologicalfunctionstargetedregionsgiverisealcohol-sensitiveDisruptioncontributesmalformationsprenatalShort-termtranscriptomicmouseinducedacuteBrainEmbryoFetalspectrumdisordersPrimaryciliaSonichedgehog

Similar Articles

Cited By