Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants.

Marta Trasoletti, Ivan Visentin, Eva Campo, Andrea Schubert, Francesca Cardinale
Author Information
  1. Marta Trasoletti: DISAFA, PlantStressLab, Turin University, Turin, Italy. ORCID
  2. Ivan Visentin: DISAFA, PlantStressLab, Turin University, Turin, Italy. ORCID
  3. Eva Campo: DISAFA, PlantStressLab, Turin University, Turin, Italy. ORCID
  4. Andrea Schubert: DISAFA, PlantStressLab, Turin University, Turin, Italy. ORCID
  5. Francesca Cardinale: DISAFA, PlantStressLab, Turin University, Turin, Italy. ORCID

Abstract

Strigolactones are phytohormones with many attributed roles in development, and more recently in responses to environmental stress. We will review evidence of the latter in the frame of the classic distinction among the three main stress acclimation strategies (i.e., avoidance, tolerance and escape), by taking osmotic stress in its several facets as a non-exclusive case study. The picture we will sketch is that of a hormonal family playing important roles in each of the mechanisms tested so far, and influencing as well the build-up of environmental memory through priming. Thus, strigolactones appear to be backstage operators rather than frontstage players, setting the tune of acclimation responses by fitting them to the plant individual history of stress experience.

Keywords

References

  1. J Hazard Mater. 2021 Aug 5;415:125589 [PMID: 34088170]
  2. Plant Physiol Biochem. 2020 Oct;155:965-979 [PMID: 32977141]
  3. New Phytol. 2022 Sep;235(5):1884-1899 [PMID: 35612785]
  4. Plant J. 2021 Jan;105(2):335-350 [PMID: 33118266]
  5. BMC Plant Biol. 2013 Dec 30;13:229 [PMID: 24377444]
  6. New Phytol. 2021 May;230(3):1003-1016 [PMID: 33474738]
  7. Nature. 2012 Mar 07;483(7389):341-4 [PMID: 22398443]
  8. Nature. 2020 Jul;583(7815):277-281 [PMID: 32528176]
  9. Planta. 2013 Oct;238(4):615-26 [PMID: 23801297]
  10. Plant J. 2018 Aug;95(3):401-413 [PMID: 29752744]
  11. Plant Commun. 2021 Mar 15;2(3):100179 [PMID: 34027393]
  12. Plant Cell Physiol. 2014 Nov;55(11):1859-63 [PMID: 25298421]
  13. Nat Commun. 2013;4:2613 [PMID: 24131983]
  14. Nat Plants. 2021 Nov;7(11):1495-1504 [PMID: 34764442]
  15. J Exp Bot. 2015 Mar;66(5):1437-52 [PMID: 25540438]
  16. Antioxidants (Basel). 2021 Nov 15;10(11): [PMID: 34829686]
  17. Plant Physiol. 2014 May 7;165(3):1221-1232 [PMID: 24808100]
  18. Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2111565119 [PMID: 35344437]
  19. Tree Physiol. 2019 Aug 1;39(8):1285-1299 [PMID: 30924906]
  20. Annu Rev Plant Biol. 2015;66:161-86 [PMID: 25621512]
  21. J Plant Res. 2022 Mar;135(2):337-350 [PMID: 35106650]
  22. Sci Adv. 2016 Nov 04;2(11):e1601266 [PMID: 27847871]
  23. New Phytol. 2015 Jan;205(2):596-607 [PMID: 25345749]
  24. J Exp Bot. 2010 Jun;61(11):3129-36 [PMID: 20501744]
  25. Nature. 2005 Jun 9;435(7043):824-7 [PMID: 15944706]
  26. Front Plant Sci. 2017 Sep 27;8:1671 [PMID: 29021800]
  27. Front Plant Sci. 2022 Jul 22;13:901782 [PMID: 35937337]
  28. Sci Rep. 2020 Apr 10;10(1):6183 [PMID: 32277136]
  29. Plant Physiol Biochem. 2019 Feb;135:99-110 [PMID: 30529172]
  30. Plant Physiol. 2014 Jan;164(1):424-39 [PMID: 24198318]
  31. New Phytol. 2012 Sep;195(4):857-871 [PMID: 22738134]
  32. Environ Pollut. 2021 Jan 15;273:116486 [PMID: 33484996]
  33. J Exp Bot. 2018 Apr 23;69(9):2291-2303 [PMID: 29346683]
  34. Mol Plant. 2020 Dec 7;13(12):1784-1801 [PMID: 33038484]
  35. Plant Cell Environ. 2022 Dec;45(12):3611-3630 [PMID: 36207810]
  36. Nat Commun. 2022 Jul 8;13(1):3974 [PMID: 35803942]
  37. Planta. 2016 Jun;243(6):1351-60 [PMID: 27040840]
  38. Plant Cell Physiol. 2022 Apr 30;: [PMID: 35489066]
  39. Plant Commun. 2022 Jan 31;3(2):100303 [PMID: 35529949]
  40. Plant J. 2019 May;98(4):607-621 [PMID: 30659713]
  41. Mol Plant. 2021 Oct 4;14(10):1768-1770 [PMID: 34582746]
  42. Int J Mol Sci. 2022 May 08;23(9): [PMID: 35563637]
  43. Int J Mol Sci. 2019 Feb 15;20(4): [PMID: 30781340]
  44. Nat Commun. 2019 Jan 14;10(1):191 [PMID: 30643123]
  45. Proc Natl Acad Sci U S A. 2016 May 31;113(22):6301-6 [PMID: 27194725]
  46. Front Plant Sci. 2020 Feb 07;11:18 [PMID: 32117367]
  47. J Pestic Sci. 2018 Aug 20;43(3):173-179 [PMID: 30363134]
  48. Front Plant Sci. 2016 Jan 08;6:1219 [PMID: 26779242]
  49. J Plant Physiol. 2013 Jan 1;170(1):47-55 [PMID: 23102876]
  50. Plants (Basel). 2020 May 11;9(5): [PMID: 32403352]
  51. Front Plant Sci. 2022 May 12;13:887232 [PMID: 35645992]
  52. Planta. 2021 Sep 29;254(5):88 [PMID: 34586497]
  53. New Phytol. 2018 Jun;218(4):1522-1533 [PMID: 29479714]
  54. Plant Cell Physiol. 2020 Aug 1;61(8):1477-1492 [PMID: 32392325]
  55. Nat Plants. 2022 May;8(5):561-573 [PMID: 35484202]
  56. Chemosphere. 2007 May;67(10):2082-8 [PMID: 17257649]
  57. EMBO J. 2022 Feb 1;41(3):e108664 [PMID: 34981847]
  58. Plant Cell. 2020 Jul;32(7):2251-2270 [PMID: 32358074]
  59. New Phytol. 2013 Jun;198(4):1108-1120 [PMID: 23496288]
  60. J Exp Bot. 2013 Apr;64(7):1967-81 [PMID: 23567864]
  61. Physiol Plant. 2022 Jan;174(1):e13590 [PMID: 34729782]
  62. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4471-4476 [PMID: 28396420]
  63. Plant Cell. 2014 Mar;26(3):1134-50 [PMID: 24610723]
  64. New Phytol. 2012 Oct;196(2):535-547 [PMID: 22924438]
  65. Commun Biol. 2022 Feb 11;5(1):126 [PMID: 35149763]
  66. New Phytol. 2018 Jan;217(1):290-304 [PMID: 28940201]
  67. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18084-9 [PMID: 25425668]
  68. Plant Physiol Biochem. 2017 Oct;119:59-69 [PMID: 28843889]
  69. J Exp Bot. 2018 Apr 23;69(9):2403-2414 [PMID: 29538660]
  70. Front Plant Sci. 2019 Apr 16;10:490 [PMID: 31057589]
  71. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1640-5 [PMID: 24434551]
  72. Biomolecules. 2020 Apr 14;10(4): [PMID: 32295207]
  73. J Exp Bot. 2018 Apr 23;69(9):2175-2188 [PMID: 29309622]
  74. Development. 2012 Apr;139(7):1285-95 [PMID: 22357928]
  75. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):851-6 [PMID: 24379380]
  76. Plant Signal Behav. 2020 Sep 1;15(9):1789321 [PMID: 32669036]
  77. Semin Cell Dev Biol. 2018 Nov;83:133-139 [PMID: 28951121]
  78. Plant Physiol Biochem. 2020 Dec;157:402-415 [PMID: 33197729]
  79. Int J Environ Res Public Health. 2017 Jul 29;14(8): [PMID: 28758909]
  80. J Plant Res. 2021 May;134(3):585-597 [PMID: 33704586]
  81. Nat Chem Biol. 2016 Oct;12(10):787-794 [PMID: 27479744]
  82. J Exp Bot. 2018 Apr 23;69(9):2333-2343 [PMID: 29554337]
  83. Trends Plant Sci. 2022 Jul;27(7):699-716 [PMID: 34906381]
  84. J Plant Physiol. 2022 Feb 9;270:153640 [PMID: 35168135]
  85. Int J Mol Sci. 2019 Dec 12;20(24): [PMID: 31842355]
  86. Trends Plant Sci. 2020 Apr;25(4):395-405 [PMID: 31948791]
  87. Hortic Res. 2014 Jan 22;1:2 [PMID: 26504528]
  88. Cell Res. 2015 Nov;25(11):1219-36 [PMID: 26470846]
  89. Plant Cell Environ. 2016 Feb;39(2):441-52 [PMID: 26305264]
  90. Biol Open. 2016 Dec 15;5(12):1806-1820 [PMID: 27793831]
  91. Curr Opin Plant Biol. 2021 Oct;63:102072 [PMID: 34198192]
  92. Plant J. 2020 Jul;103(1):111-127 [PMID: 32022953]
  93. J Exp Bot. 2018 Apr 23;69(9):2345-2354 [PMID: 29394369]
  94. Front Plant Sci. 2021 Dec 14;12:793459 [PMID: 34970291]
  95. Trends Plant Sci. 2022 May;27(5):450-459 [PMID: 34876337]
  96. New Phytol. 2022 May;234(3):1003-1017 [PMID: 35119708]
  97. Dev Cell. 2013 Dec 23;27(6):681-8 [PMID: 24369836]
  98. Trends Plant Sci. 2020 Oct;25(10):960-963 [PMID: 32709472]
  99. Curr Biol. 2015 Mar 2;25(5):647-55 [PMID: 25683808]
  100. Ecotoxicol Environ Saf. 2021 Apr 1;212:112002 [PMID: 33529920]
  101. Plant Cell. 2005 Mar;17(3):746-59 [PMID: 15705953]
  102. BMC Biol. 2017 Jun 29;15(1):52 [PMID: 28662667]
  103. New Phytol. 2016 Dec;212(4):954-963 [PMID: 27716937]
  104. Nature. 2016 Aug 25;536(7617):469-73 [PMID: 27479325]
  105. Plant Physiol Biochem. 2021 Feb;159:113-122 [PMID: 33359960]
  106. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8897-902 [PMID: 21555559]
  107. Plant Cell. 2014 Apr 25;26(4):1792-1807 [PMID: 24769482]
  108. Hortic Res. 2021 Nov 1;8(1):237 [PMID: 34719688]
  109. Curr Res Microb Sci. 2021 Mar 04;2:100026 [PMID: 34841317]
  110. Nat Chem Biol. 2014 Dec;10(12):1028-33 [PMID: 25344813]
  111. BMC Plant Biol. 2022 Jan 13;22(1):30 [PMID: 35027005]
  112. Plant Physiol. 2022 Jan 20;188(1):97-110 [PMID: 34718781]
  113. Plant Signal Behav. 2018 Mar 4;13(3):e1444322 [PMID: 29473784]
  114. Plant Cell Environ. 2020 Sep;43(9):2239-2253 [PMID: 32501539]
  115. Plant Cell Environ. 2020 Jul;43(7):1613-1624 [PMID: 32196123]
  116. Curr Biol. 2012 Nov 6;22(21):2032-6 [PMID: 22959345]
  117. PLoS Genet. 2017 Nov 13;13(11):e1007076 [PMID: 29131815]
  118. J Exp Bot. 2016 Dec;67(22):6309-6322 [PMID: 27733440]
  119. Front Plant Sci. 2021 Apr 27;12:639401 [PMID: 33986761]
  120. Planta. 2020 Apr 18;251(5):97 [PMID: 32306106]
  121. Planta. 2015 Jun;241(6):1435-51 [PMID: 25716094]
  122. Sci Adv. 2019 Dec 18;5(12):eaax9067 [PMID: 32064317]
  123. Ecotoxicol Environ Saf. 2021 Apr 15;213:112047 [PMID: 33601172]
  124. Science. 1966 Dec 2;154(3753):1189-90 [PMID: 17780042]
  125. Plants (Basel). 2021 Jun 16;10(6): [PMID: 34208497]
  126. PLoS Genet. 2019 Aug 29;15(8):e1008327 [PMID: 31465451]

MeSH Term

Plants
Stress, Physiological
Lactones
Acclimatization

Chemicals

GR24 strigolactone
Lactones

Word Cloud

Created with Highcharts 10.0.0stressacclimationenvironmentalStrigolactonesrolesresponseswillavoidanceescapehormonalprimingstrigolactonesphytohormonesmanyattributeddevelopmentrecentlyreviewevidencelatterframeclassicdistinctionamongthreemainstrategiesietolerance andtakingosmoticseveralfacetsnon-exclusivecasestudypicturesketchfamilyplayingimportantmechanismstestedfarinfluencingwellbuild-upmemoryThusappearbackstageoperatorsratherfrontstageplayerssettingtunefittingplantindividualhistoryexperiencehubplantsabiotictolerance

Similar Articles

Cited By