A Bioinspired Retinomorphic Device for Spontaneous Chromatic Adaptation.

Yinlong Tan, Hao Hao, Yabo Chen, Yan Kang, Tao Xu, Cheng Li, Xiangnan Xie, Tian Jiang
Author Information
  1. Yinlong Tan: College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China. ORCID
  2. Hao Hao: Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, 410073, Changsha, P. R. China.
  3. Yabo Chen: College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, P. R. China.
  4. Yan Kang: College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China.
  5. Tao Xu: College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China.
  6. Cheng Li: Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, 410073, Changsha, P. R. China.
  7. Xiangnan Xie: Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, 410073, Changsha, P. R. China.
  8. Tian Jiang: Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, 410073, Changsha, P. R. China. ORCID

Abstract

Chromatic adaptation refers to the sensing and preprocessing of the spectral composition of incident light on the retina, and it is important for color-image recognition. It is challenging to apply sensing, memory, and processing functions to color images via the same physical process using the complementary metal-oxide-semiconductor technology because of redundant data detection, complicated signal conversion processes, and the requirement for additional memory modules. Inspired by the highly efficient chromatic adaptation of the human retina, a 2D oxygen-mediated platinum diselenide (PtSe ) device is presented to simultaneously apply sensing, memory, and processing functions to color images. The device exhibits a wavelength-dependent bipolar photoresponse and the linear pulse-number dependence of photoconductivity, which is dominated by the photon-mediated physical adsorption and desorption of oxygen molecules on bilayer PtSe . The proposed retinomorphic device shows superior image classification accuracy (over 90%) compared to an independent pseudocolor channel (less than 75%). Hence, it is promising for developing artificial vision perception systems with reduced architectural complexity.

Keywords

References

  1. L. Pi, P. Wang, S.-J. Liang, P. Luo, H. Wang, D. Li, Z. Li, P. Chen, X. Zhou, F. Miao, T. Zhai, Nat. Electron. 2022, 5, 248.
  2. L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, T. Mueller, Nature 2020, 579, 62.
  3. S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh, J.-H. Kim, K. Heo, J.-W. Choi, C. Choi, S. Oh, D. Kuzum, H. S. P. Wong, J.-H. Park, Nat. Commun. 2018, 9, 5106.
  4. F. Zhou, Y. Chai, Nat. Electron. 2020, 3, 664.
  5. X. Han, Z. Xu, W. Wu, X. Liu, P. Yan, C. Pan, Small Struct. 2020, 1, 2000029.
  6. D. L. Snyder, A. M. Hammoud, R. L. White, J. Opt. Soc. Am. A 1993, 10, 1014.
  7. P. Soo-Chang, T. Io-Kuong, IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 503.
  8. M. Schanz, W. Brockherde, R. Hauschild, B. J. Hosticka, M. Schwarz, IEEE Trans. Electron. Devices 1997, 44, 1699.
  9. N. Massari, M. Gottardi, IEEE J. Solid-State Circuits 2007, 42, 647.
  10. C. McCollough, Science 1965, 149, 1115.
  11. A. Stockman, D. Macleod, N. E. Johnson, J. Opt. Soc. Am. A 1993, 10, 2491.
  12. K. Kyuma, E. Lange, J. Ohta, A. Hermanns, B. Banish, M. Oita, Nature 1994, 372, 197.
  13. T. Baden, D. Osorio, Annu. Rev. Vis. Sci. 2019, 5, 177.
  14. K. R. Alexander, in Encyclopedia of the Eye (Ed: D. A. Dartt), Academic Press, Oxford, UK 2010, pp. 379-386.
  15. F. Zhou, Z. Zhou, J. Chen, T. H. Choy, J. Wang, N. Zhang, Z. Lin, S. Yu, J. Kang, H. S. P. Wong, Y. Chai, Nat. Nanotechnol. 2019, 14, 776.
  16. H. Wang, Q. Zhao, Z. Ni, Q. Li, H. Liu, Y. Yang, L. Wang, Y. Ran, Y. Guo, W. Hu, Y. Liu, Adv. Mater. 2018, 30, 1803961.
  17. S. Chen, Z. Lou, D. Chen, G. Shen, Adv. Mater. 2018, 30, 1705400.
  18. F. Liao, Z. Zhou, B. J. Kim, J. Chen, J. Wang, T. Wan, Y. Zhou, A/ Hoang, C. Wang, J. Kang, J.-H. Ahn, Y. Chai, Nat. Electron. 2022, 5, 84.
  19. Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu, P. Zhou, Nat. Nanotechnol. 2022, 17, 27.
  20. Y. Pei, L. Yan, Z. Wu, J. Lu, J. Zhao, J. Chen, Q. Liu, X. Yan, ACS Nano 2021, 15, 17319.
  21. Q.-B. Zhu, B. Li, D.-D. Yang, C. Liu, S. Feng, M.-L. Chen, Y. Sun, Y.-N. Tian, X. Su, X.-M. Wang, S. Qiu, Q.-W. Li, X.-M. Li, H.-B. Zeng, H.-M. Cheng, D.-M. Sun, Nat. Commun. 2021, 12, 1798.
  22. C.-Y. Wang, S.-J. Liang, S. Wang, P. Wang, Z. a. Li, Z. Wang, A. Gao, C. Pan, C. Liu, J. Liu, H. Yang, X. Liu, W. Song, C. Wang, B. Cheng, X. Wang, K. Chen, Z. Wang, K. Watanabe, T. Taniguchi, J. J. Yang, F. Miao, Sci. Adv. 2020, 6, eaba6173.
  23. Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye, X. Chai, J. Ye, Y. Chen, R. Xie, Y. Zhou, Z. Hu, Q. Li, L. Zhang, F. Wang, P. Wang, J. Miao, J. Wang, X. Chen, W. Lu, P. Zhou, W. Hu, Nat. Electron. 2021, 4, 357.
  24. H. Jang, C. Liu, H. Hinton, M.-H. Lee, H. Kim, M. Seol, H.-J. Shin, S. Park, D. Ham, Adv. Mater. 2020, 32, 2002431.
  25. S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li, C. Pan, Y. Dai, A. Gao, C. Liu, J. Liu, H. Yang, X. Liu, B. Cheng, K. Chen, Z. Wang, K. Watanabe, T. Taniguchi, S.-J. Liang, F. Miao, Natl. Sci. Rev. 2021, 8, nwaa172.
  26. T. Ahmed, M. Tahir, M. X. Low, Y. Ren, S. A. Tawfik, E. L. H. Mayes, S. Kuriakose, S. Nawaz, M. J. S. Spencer, H. Chen, M. Bhaskaran, S. Sriram, S. Walia, Adv. Mater. 2021, 33, 2004207.
  27. S. Seo, J.-J. Lee, R.-G. Lee, T. H. Kim, S. Park, S. Jung, H.-K. Lee, M. Andreev, K.-B. Lee, K.-S. Jung, S. Oh, H.-J. Lee, K. S. Kim, G. Y. Yeom, Y.-H. Kim, J.-H. Park, Adv. Mater. 2021, 33, 2170316.
  28. F. Liao, F. Zhou, Y. Chai, J. Semicond. 2021, 42, 013105.
  29. D. M. Dacey, Prog. Retinal Eye Res. 1999, 18, 737.
  30. A. Stockman, L. T. Sharpe, Vision Res. 1998, 38, 3193.
  31. F. A. Dunn, M. J. Lankheet, F. Rieke, Nature 2007, 449, 603.
  32. M. De, J. Neurophysiol. 1978, 41, 1418.
  33. G. Buchsbaum, A. Gottschalk, Proc. R. Soc. B 1983, 220, 89.
  34. Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, Y. Chai, Adv. Mater. 2017, 29, 1604230.
  35. Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, Y. Chai, Adv. Mater. 2016, 28, 2399.
  36. G. Wang, Z. Wang, N. McEvoy, P. Fan, W. J. Blau, Adv. Mater. 2021, 33, 2004070.
  37. Z. Wang, P. Wang, F. Wang, J. Ye, T. He, F. Wu, M. Peng, P. Wu, Y. Chen, F. Zhong, R. Xie, Z. Cui, L. Shen, Q. Zhang, L. Gu, M. Luo, Y. Wang, H. Chen, P. Zhou, A. Pan, X. Zhou, L. Zhang, W. Hu, Adv. Funct. Mater. 2020, 30, 1907945.
  38. J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, Q. Bao, ACS Appl. Mater. Interfaces 2018, 10, 21534.
  39. Y. Gong, Z. Lin, Y.-X. Chen, Q. Khan, C. Wang, B. Zhang, G. Nie, N. Xie, D. Li, Nano-Micro Lett. 2020, 12, 174.
  40. M. Sajjad, E. Montes, N. Singh, U. Schwingenschlögl, Adv. Mater. Interfaces 2017, 4, 1600911.
  41. Q. Liang, J. Gou, Q. Z. Arramel, W. Zhang, A. T. S. Wee, Nano Res. 2020, 13, 3439.
  42. A. Grillo, E. Faella, A. Pelella, F. Giubileo, L. Ansari, F. Gity, P. K. Hurley, N. McEvoy, A. Di Bartolomeo, Adv. Funct. Mater. 2021, 31, 2105722.
  43. J. E. Lennard-Jones, Proc. Phys. Soc. 1931, 43, 461.
  44. D. S. Jovanović, Colloid Polym. Sci. 1969, 235, 1203.
  45. M. Nilsback, A. Zisserman, in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Vol. 2, IEEE, Piscataway, NJ, USA 2006, pp. 1447-1454.
  46. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 1998, 86, 2278.
  47. S. Ren, K. He, R. Girshick, J. Sun, IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137.

Grants

  1. 52103311/National Natural Science Foundation of China
  2. 61801498/National Natural Science Foundation of China
  3. ZK18-01-03/National University of Defense Technology
  4. 2020YFB2205804/National Key Research and Development Program of China

MeSH Term

Humans
Color Perception
Adaptation, Physiological
Retina
Photons

Word Cloud

Created with Highcharts 10.0.0adaptationsensingmemorydeviceChromaticretinacolor-imagerecognitionapplyprocessingfunctionscolorimagesphysicalchromatic2DplatinumdiselenidePtSeretinomorphicreferspreprocessingspectralcompositionincidentlightimportantchallengingviaprocessusingcomplementarymetal-oxide-semiconductortechnologyredundantdatadetectioncomplicatedsignalconversionprocessesrequirementadditionalmodulesInspiredhighlyefficienthumanoxygen-mediatedpresentedsimultaneouslyexhibitswavelength-dependentbipolarphotoresponselinearpulse-numberdependencephotoconductivitydominatedphoton-mediatedadsorptiondesorptionoxygenmoleculesbilayerproposedshowssuperiorimageclassificationaccuracy90%comparedindependentpseudocolorchannelless75%HencepromisingdevelopingartificialvisionperceptionsystemsreducedarchitecturalcomplexityBioinspiredRetinomorphicDeviceSpontaneousAdaptationmaterialsdevices

Similar Articles

Cited By