A Methylation Diagnostic Model Based on Random Forests and Neural Networks for Asthma Identification.

Dong-Dong Li, Ting Chen, You-Liang Ling, YongAn Jiang, Qiu-Gen Li
Author Information
  1. Dong-Dong Li: Nanchang University, Nanchang, 330006 Jiangxi, China. ORCID
  2. Ting Chen: Department of Pulmonary and Critical Care Medicine, Wuhan Wuchang Hospital, Wuhan, 430063 Hubei, China. ORCID
  3. You-Liang Ling: Nanchang University, Nanchang, 330006 Jiangxi, China. ORCID
  4. YongAn Jiang: Nanchang University, Nanchang, 330006 Jiangxi, China. ORCID
  5. Qiu-Gen Li: Nanchang University, Nanchang, 330006 Jiangxi, China. ORCID

Abstract

Background: asthma significantly impacts human life and health as a chronic disease. Traditional treatments for asthma have several limitations. Artificial intelligence aids in cancer treatment and may also accelerate our understanding of asthma mechanisms. We aimed to develop a new clinical diagnosis model for asthma using artificial neural networks (ANN).
Methods: Datasets (GSE85566, GSE40576, and GSE13716) were downloaded from Gene Expression Omnibus (GEO) and identified differentially expressed CpGs (DECs) enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Random forest (RF) and ANN algorithms further identified gene characteristics and built clinical models. In addition, two external validation datasets (GSE40576 and GSE137716) were used to validate the diagnostic ability of the model.
Results: The methylation analysis tool (ChAMP) considered DECs that were up-regulated ( =121) and down-regulated ( =20). GO results showed enrichment of actin cytoskeleton organization and cell-substrate adhesion, shigellosis, and serotonergic synapses. RF (random forest) analysis identified 10 crucial DECs (cg05075579, cg20434422, cg03907390, cg00712106, cg05696969, cg22862094, cg11733958, cg00328720, and cg13570822). ANN constructed the clinical model according to 10 DECs. In two external validation datasets (GSE40576 and GSE137716), the Area Under Curve (AUC) for GSE137716 was 1.000, and AUC for GSE40576 was 0.950, confirming the reliability of the model.
Conclusion: Our findings provide new methylation markers and clinical diagnostic models for asthma diagnosis and treatment.

References

  1. PeerJ. 2021 Feb 16;9:e10884 [PMID: 33628643]
  2. Curr Opin Cell Biol. 2018 Oct;54:1-8 [PMID: 29477121]
  3. Clin Exp Med. 2018 Feb;18(1):1-14 [PMID: 28752221]
  4. Clin Epigenetics. 2020 Apr 3;12(1):51 [PMID: 32245523]
  5. BMC Med Genomics. 2022 May 12;15(1):110 [PMID: 35550122]
  6. Clin Chim Acta. 2021 Dec;523:97-105 [PMID: 34529984]
  7. Comb Chem High Throughput Screen. 2022 Apr 04;: [PMID: 35379119]
  8. Front Immunol. 2020 Nov 30;11:603312 [PMID: 33329598]
  9. Math Biosci Eng. 2022 Jul 22;19(10):10407-10423 [PMID: 36032000]
  10. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33313673]
  11. J Allergy Clin Immunol. 2015 Jul;136(1):69-80 [PMID: 25769910]
  12. Clin Cancer Res. 2019 May 15;25(10):3006-3015 [PMID: 30979733]
  13. Int J Mol Sci. 2021 Feb 27;22(5): [PMID: 33673725]
  14. J Allergy Clin Immunol. 2019 Jul;144(1):49-50 [PMID: 30981596]
  15. Genes (Basel). 2022 May 24;13(6): [PMID: 35741697]
  16. Chest. 2021 May;159(5):1747-1757 [PMID: 33440184]
  17. Biomolecules. 2020 Apr 17;10(4): [PMID: 32316682]
  18. Clin Transl Allergy. 2022 Mar;12(3):e12131 [PMID: 35344303]
  19. Front Immunol. 2022 Jan 04;12:771216 [PMID: 35058921]
  20. Nat Genet. 2022 Jan;54(1):18-29 [PMID: 34980917]
  21. J Allergy Clin Immunol. 2021 Dec;148(6):1430-1441 [PMID: 34655640]
  22. JCI Insight. 2016 Dec 8;1(20):e90151 [PMID: 27942592]
  23. Clin Exp Allergy. 2014;44(5):681-9 [PMID: 24131275]
  24. Endocr Relat Cancer. 2019 Jul;26(7):R415-R439 [PMID: 31035251]
  25. Environ Health Perspect. 2010 Apr;118(4):465-71 [PMID: 20064776]
  26. Int Forum Allergy Rhinol. 2015 Sep;5 Suppl 1:S2-6 [PMID: 26335832]
  27. J Intern Med. 2018 Dec;284(6):603-619 [PMID: 30102808]
  28. Proc Nutr Soc. 2018 Nov;77(4):412-422 [PMID: 29708096]
  29. Aging (Albany NY). 2020 Oct 24;12(20):20471-20482 [PMID: 33099536]
  30. PLoS Comput Biol. 2019 Jul 11;15(7):e1007084 [PMID: 31295267]
  31. Clin Epigenetics. 2020 Oct 2;12(1):145 [PMID: 33008450]
  32. Genome Med. 2017 Dec 4;9(1):107 [PMID: 29202803]
  33. J Allergy Clin Immunol Pract. 2021 Jun;9(6):2255-2261 [PMID: 33618053]
  34. J Neural Eng. 2020 Nov 19;17(6): [PMID: 33036008]
  35. Biomech Model Mechanobiol. 2020 Oct;19(5):1781-1796 [PMID: 32108272]
  36. Clin Transl Allergy. 2021 Nov;11(9):e12076 [PMID: 34841728]

MeSH Term

Artificial Intelligence
Asthma
Computational Biology
DNA Methylation
Gene Expression Profiling
Gene Regulatory Networks
Humans
Neural Networks, Computer
Reproducibility of Results

Word Cloud

Created with Highcharts 10.0.0asthmaclinicalmodelGSE40576DECsANNidentifiedanalysisGSE137716AsthmatreatmentnewdiagnosisGeneGORandomforestRFmodelstwoexternalvalidationdatasetsdiagnosticmethylation10AUCBackground:significantlyimpactshumanlifehealthchronicdiseaseTraditionaltreatmentsseverallimitationsArtificialintelligenceaidscancermayalsoaccelerateunderstandingmechanismsaimeddevelopusingartificialneuralnetworksMethods:DatasetsGSE85566GSE13716downloadedExpressionOmnibusGEOdifferentiallyexpressedCpGsenrichedOntologyKyotoEncyclopediaGenesGenomesKEGGalgorithmsgenecharacteristicsbuiltadditionusedvalidateabilityResults:toolChAMPconsideredup-regulated =121down-regulated =20resultsshowedenrichmentactincytoskeletonorganizationcell-substrateadhesionshigellosisserotonergicsynapsesrandomcrucialcg05075579cg20434422cg03907390cg00712106cg05696969cg22862094cg11733958cg00328720cg13570822constructedaccordingAreaCurve10000950confirmingreliabilityConclusion:findingsprovidemarkersMethylationDiagnosticModelBasedForestsNeuralNetworksIdentification

Similar Articles

Cited By (1)