CottonMD: a multi-omics database for cotton biological study.

Zhiquan Yang, Jing Wang, Yiming Huang, Shengbo Wang, Lulu Wei, Dongxu Liu, Yonglin Weng, Jinhai Xiang, Qiang Zhu, Zhaoen Yang, Xinhui Nie, Yu Yu, Zuoren Yang, Qing-Yong Yang
Author Information
  1. Zhiquan Yang: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China. ORCID
  2. Jing Wang: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  3. Yiming Huang: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  4. Shengbo Wang: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  5. Lulu Wei: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  6. Dongxu Liu: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China. ORCID
  7. Yonglin Weng: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  8. Jinhai Xiang: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  9. Qiang Zhu: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  10. Zhaoen Yang: State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
  11. Xinhui Nie: Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, China.
  12. Yu Yu: Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang 832000, China.
  13. Zuoren Yang: State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
  14. Qing-Yong Yang: National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China. ORCID

Abstract

Cotton is an important economic crop, and many loci for important traits have been identified, but it remains challenging and time-consuming to identify candidate or causal genes/variants and clarify their roles in phenotype formation and regulation. Here, we first collected and integrated the multi-omics datasets including 25 genomes, transcriptomes in 76 tissue samples, epigenome data of five species and metabolome data of 768 metabolites from four tissues, and genetic variation, trait and transcriptome datasets from 4180 cotton accessions. Then, a cotton multi-omics database (CottonMD, http://yanglab.hzau.edu.cn/CottonMD/) was constructed. In CottonMD, multiple statistical methods were applied to identify the associations between variations and phenotypes, and many easy-to-use analysis tools were provided to help researchers quickly acquire the related omics information and perform multi-omics data analysis. Two case studies demonstrated the power of CottonMD for identifying and analyzing the candidate genes, as well as the great potential of integrating multi-omics data for cotton genetic breeding and functional genomics research.

References

  1. Nat Genet. 2020 May;52(5):516-524 [PMID: 32284579]
  2. Nat Genet. 2020 May;52(5):525-533 [PMID: 32313247]
  3. Genome Biol. 2016 Apr 12;17:66 [PMID: 27072794]
  4. Sci Data. 2017 Dec 19;4:170184 [PMID: 29257129]
  5. Nucleic Acids Res. 2014 Jan;42(Database issue):D1229-36 [PMID: 24203703]
  6. Plant Physiol. 1994 Jan;104(1):1-6 [PMID: 12232055]
  7. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  8. Nat Genet. 2016 Mar;48(3):245-52 [PMID: 26854917]
  9. J R Soc Interface. 2015 Nov 6;12(112): [PMID: 26490630]
  10. Mol Genet Genomics. 2020 Jan;295(1):55-66 [PMID: 31446488]
  11. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  12. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W29-33 [PMID: 23609542]
  13. Int J Mol Sci. 2019 Apr 26;20(9): [PMID: 31027387]
  14. Cell. 2014 Dec 18;159(7):1665-80 [PMID: 25497547]
  15. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  16. Plant Biotechnol J. 2020 Dec;18(12):2533-2544 [PMID: 32558152]
  17. Nat Protoc. 2012 Sep;7(9):1728-40 [PMID: 22936215]
  18. Genome Biol. 2017 Feb 20;18(1):33 [PMID: 28219438]
  19. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  20. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  21. Bioinformatics. 2016 Jun 1;32(11):1740-2 [PMID: 26819473]
  22. J Integr Plant Biol. 2013 Jul;55(7):570-1 [PMID: 23718577]
  23. Front Genet. 2019 Aug 20;10:736 [PMID: 31481971]
  24. Genome Biol. 2021 Apr 23;22(1):119 [PMID: 33892774]
  25. Front Plant Sci. 2021 Dec 21;12:803736 [PMID: 34992626]
  26. G3 (Bethesda). 2019 Oct 7;9(10):3079-3085 [PMID: 31462444]
  27. Nat Genet. 2012 Jun 17;44(7):821-4 [PMID: 22706312]
  28. Curr Protoc Bioinformatics. 2010 Sep;Chapter 9:Unit 9.12 [PMID: 20836076]
  29. Adv Sci (Weinh). 2021 Mar 15;8(10):2003634 [PMID: 34026441]
  30. Mol Biol Rep. 2012 Apr;39(4):3485-90 [PMID: 21725638]
  31. Am J Hum Genet. 2016 Jan 7;98(1):116-26 [PMID: 26748515]
  32. Gene. 2021 Jan 30;767:145180 [PMID: 33002572]
  33. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  34. Nat Genet. 2010 Apr;42(4):348-54 [PMID: 20208533]
  35. Am J Hum Genet. 2011 Jan 7;88(1):76-82 [PMID: 21167468]
  36. Nat Biotechnol. 2015 May;33(5):524-30 [PMID: 25893780]
  37. Nat Genet. 2019 Apr;51(4):592-599 [PMID: 30926968]
  38. Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334 [PMID: 33290552]
  39. Nat Genet. 2019 Apr;51(4):739-748 [PMID: 30886425]
  40. Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551 [PMID: 33125081]
  41. BMC Genomics. 2016 May 13;17:352 [PMID: 27177443]
  42. Front Plant Sci. 2022 Jan 21;13:773107 [PMID: 35126443]
  43. Nat Genet. 2018 Jun;50(6):803-813 [PMID: 29736016]
  44. Sci Adv. 2020 Sep 10;6(37): [PMID: 32917697]
  45. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  46. Nucleic Acids Res. 2021 Jan 8;49(D1):D10-D17 [PMID: 33095870]
  47. Nat Genet. 2021 Sep;53(9):1385-1391 [PMID: 34373642]
  48. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  49. Genome Res. 2010 Mar;20(3):393-402 [PMID: 20086244]
  50. Theor Appl Genet. 2020 Dec;133(12):3273-3285 [PMID: 32844253]
  51. Plant Cell Rep. 2016 Oct;35(10):2167-79 [PMID: 27432176]
  52. BMC Plant Biol. 2017 Jun 8;17(1):101 [PMID: 28595571]
  53. Nat Genet. 2021 Jun;53(6):916-924 [PMID: 33859417]
  54. Nat Genet. 2017 Apr;49(4):579-587 [PMID: 28263319]
  55. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
  56. Nucleic Acids Res. 2017 Jan 4;45(D1):D1090-D1099 [PMID: 28053168]
  57. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  58. Genetics. 2014 Jun;197(2):573-89 [PMID: 24700103]
  59. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  60. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  61. Plant J. 2020 Jul;103(2):677-689 [PMID: 32246786]
  62. Nat Biotechnol. 2015 May;33(5):531-7 [PMID: 25893781]
  63. Nat Genet. 2018 Jun;50(6):796-802 [PMID: 29736014]
  64. Bioinformatics. 2011 Jun 1;27(11):1571-2 [PMID: 21493656]
  65. Nucleic Acids Res. 2020 Jan 8;48(D1):D1076-D1084 [PMID: 31665439]
  66. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  67. Nucleic Acids Res. 2012 Jan;40(Database issue):D57-63 [PMID: 22139929]
  68. Am J Hum Genet. 2016 Dec 1;99(6):1245-1260 [PMID: 27866706]
  69. New Phytol. 2020 Jun;226(6):1738-1752 [PMID: 32017125]

MeSH Term

Databases, Factual
Genome
Genomics
Multiomics
Phenotype
Gossypium

Links to CNCB-NGDC Resources

Database Commons: DBC008389 (CottonMD)

Word Cloud

Created with Highcharts 10.0.0multi-omicsdatacottonCottonMDimportantmanyidentifycandidatedatasetsgeneticdatabaseanalysisCottoneconomiccroplocitraitsidentifiedremainschallengingtime-consumingcausalgenes/variantsclarifyrolesphenotypeformationregulationfirstcollectedintegratedincluding25genomestranscriptomes76tissuesamplesepigenomefivespeciesmetabolome768metabolitesfourtissuesvariationtraittranscriptome4180accessionshttp://yanglabhzaueducn/CottonMD/constructedmultiplestatisticalmethodsappliedassociationsvariationsphenotypeseasy-to-usetoolsprovidedhelpresearchersquicklyacquirerelatedomicsinformationperformTwocasestudiesdemonstratedpoweridentifyinganalyzinggeneswellgreatpotentialintegratingbreedingfunctionalgenomicsresearchCottonMD:biologicalstudy

Similar Articles

Cited By