EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number.

Oswaldo Gressani, Jacco Wallinga, Christian L Althaus, Niel Hens, Christel Faes
Author Information
  1. Oswaldo Gressani: Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium. ORCID
  2. Jacco Wallinga: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. ORCID
  3. Christian L Althaus: Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland. ORCID
  4. Niel Hens: Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium. ORCID
  5. Christel Faes: Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium. ORCID

Abstract

In infectious disease epidemiology, the instantaneous reproduction number [Formula: see text] is a time-varying parameter defined as the average number of secondary infections generated by an infected individual at time t. It is therefore a crucial epidemiological statistic that assists public health decision makers in the management of an epidemic. We present a new Bayesian tool (EpiLPS) for robust estimation of the time-varying reproduction number. The proposed methodology smooths the epidemic curve and allows to obtain (approximate) point estimates and credible intervals of [Formula: see text] by employing the renewal equation, using Bayesian P-splines coupled with Laplace approximations of the conditional posterior of the spline vector. Two alternative approaches for inference are presented: (1) an approach based on a maximum a posteriori argument for the model hyperparameters, delivering estimates of [Formula: see text] in only a few seconds; and (2) an approach based on a Markov chain Monte Carlo (MCMC) scheme with underlying Langevin dynamics for efficient sampling of the posterior target distribution. Case counts per unit of time are assumed to follow a negative binomial distribution to account for potential overdispersion in the data that would not be captured by a classic Poisson model. Furthermore, after smoothing the epidemic curve, a "plug-in'' estimate of the reproduction number can be obtained from the renewal equation yielding a closed form expression of [Formula: see text] as a function of the spline parameters. The approach is extremely fast and free of arbitrary smoothing assumptions. EpiLPS is applied on data of SARS-CoV-1 in Hong-Kong (2003), influenza A H1N1 (2009) in the USA and on the SARS-CoV-2 pandemic (2020-2021) for Belgium, Portugal, Denmark and France.

References

  1. Proc Biol Sci. 2007 Feb 22;274(1609):599-604 [PMID: 17476782]
  2. Emerg Infect Dis. 2022 Aug;28(8):1699-1702 [PMID: 35732195]
  3. BMC Med Res Methodol. 2019 Mar 6;19(1):46 [PMID: 30841848]
  4. PLoS One. 2007 Aug 22;2(8):e758 [PMID: 17712406]
  5. Stat Med. 2022 Jun 30;41(14):2602-2626 [PMID: 35699121]
  6. Environ Res. 2015 Oct;142:319-27 [PMID: 26188633]
  7. Biometrika. 1950 Dec;37(3-4):358-82 [PMID: 14801062]
  8. IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41 [PMID: 22499653]
  9. Stat Med. 2014 Mar 30;33(7):1176-92 [PMID: 24122943]
  10. Nature. 2005 Sep 8;437(7056):209-14 [PMID: 16079797]
  11. Biostatistics. 2016 Oct;17(4):779-92 [PMID: 27324411]
  12. Am J Epidemiol. 2021 Apr 6;190(4):611-620 [PMID: 33034345]
  13. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  14. J R Soc Interface. 2019 Jan 31;16(150):20180670 [PMID: 30958162]
  15. Science. 2003 Jun 20;300(5627):1966-70 [PMID: 12766207]
  16. PLoS Comput Biol. 2021 Sep 7;17(9):e1009347 [PMID: 34492011]
  17. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9081-6 [PMID: 27457935]
  18. PLoS One. 2007 Feb 14;2(2):e180 [PMID: 17299582]
  19. PLoS Comput Biol. 2020 Dec 10;16(12):e1008409 [PMID: 33301457]
  20. PLOS Digit Health. 2022 Jun 27;1(6):e0000052 [PMID: 36812522]
  21. Biom J. 2023 Aug;65(6):e2200024 [PMID: 36639234]
  22. Biometrics. 1990 Sep;46(3):863-7 [PMID: 2242417]
  23. Stat Med. 2005 Dec 30;24(24):3977-89 [PMID: 16320263]

MeSH Term

Humans
Bayes Theorem
Influenza A Virus, H1N1 Subtype
SARS-CoV-2
COVID-19
Reproduction

Word Cloud

Created with Highcharts 10.0.0numberreproduction[Formula:seetext]time-varyingepidemicBayesianapproachtimetoolEpiLPSestimationcurveestimatesrenewalequationposteriorsplinebasedmodeldistributiondatasmoothingfastinfectiousdiseaseepidemiologyinstantaneousparameterdefinedaveragesecondaryinfectionsgeneratedinfectedindividualtthereforecrucialepidemiologicalstatisticassistspublichealthdecisionmakersmanagementpresentnewrobustproposedmethodologysmoothsallowsobtainapproximatepointcredibleintervalsemployingusingP-splinescoupledLaplaceapproximationsconditionalvectorTwoalternativeapproachesinferencepresented:1maximumposterioriargumenthyperparametersdeliveringseconds2MarkovchainMonteCarloMCMCschemeunderlyingLangevindynamicsefficientsamplingtargetCasecountsperunitassumedfollownegativebinomialaccountpotentialoverdispersioncapturedclassicPoissonFurthermore"plug-in''estimatecanobtainedyieldingclosedformexpressionfunctionparametersextremelyfreearbitraryassumptionsappliedSARS-CoV-1Hong-Kong2003influenzaH1N12009USASARS-CoV-2pandemic2020-2021BelgiumPortugalDenmarkFranceEpiLPS:flexible

Similar Articles

Cited By