Structural basis for host recognition and superinfection exclusion by bacteriophage T5.

Bert van den Berg, Augustinas Silale, Arnaud Baslé, Astrid F Brandner, Sophie L Mader, Syma Khalid
Author Information
  1. Bert van den Berg: Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom. ORCID
  2. Augustinas Silale: Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom. ORCID
  3. Arnaud Baslé: Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom. ORCID
  4. Astrid F Brandner: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom. ORCID
  5. Sophie L Mader: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom. ORCID
  6. Syma Khalid: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom. ORCID

Abstract

A key but poorly understood stage of the bacteriophage life cycle is the binding of phage receptor-binding proteins (RBPs) to receptors on the host cell surface, leading to injection of the phage genome and, for lytic phages, host cell lysis. To prevent secondary infection by the same or a closely related phage and nonproductive phage adsorption to lysed cell fragments, superinfection exclusion (SE) proteins can prevent the binding of RBPs via modulation of the host receptor structure in ways that are also unclear. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the phage T5 outer membrane (OM) receptor FhuA in complex with the T5 RBP pb5, and the crystal structure of FhuA complexed to the OM SE lipoprotein Llp. Pb5 inserts four loops deeply into the extracellular lumen of FhuA and contacts the plug but does not cause any conformational changes in the receptor, supporting the view that DNA translocation does not occur through the lumen of OM channels. The FhuA-Llp structure reveals that Llp is periplasmic and binds to a nonnative conformation of the plug of FhuA, causing the inward folding of two extracellular loops via "reverse" allostery. The inward-folded loops of FhuA overlap with the pb5 binding site, explaining how Llp binding to FhuA abolishes further infection of by phage T5 and suggesting a mechanism for SE via the jamming of TonB-dependent transporters by small phage lipoproteins.

Keywords

References

  1. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  2. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  3. Microbiol Mol Biol Rev. 2011 Sep;75(3):423-33, first page of table of contents [PMID: 21885679]
  4. Science. 1998 Dec 18;282(5397):2215-20 [PMID: 9856937]
  5. Methods Mol Biol. 2020;2112:29-42 [PMID: 32006276]
  6. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  7. J Mol Biol. 2007 Sep 21;372(3):774-97 [PMID: 17681537]
  8. Genetics. 1945 Mar;30(2):119-36 [PMID: 17247150]
  9. J Bacteriol. 2006 Feb;188(4):1419-36 [PMID: 16452425]
  10. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):293-302 [PMID: 21460447]
  11. Bioessays. 2015 Jan;37(1):6-9 [PMID: 25521633]
  12. Virology. 1996 May 1;219(1):19-28 [PMID: 8623528]
  13. Mol Microbiol. 1994 Apr;12(2):321-32 [PMID: 8057856]
  14. Virology. 1984 Nov;139(1):11-21 [PMID: 6093378]
  15. Nat Rev Microbiol. 2018 Dec;16(12):760-773 [PMID: 30104690]
  16. J Biol Chem. 2008 May 16;283(20):13556-64 [PMID: 18348984]
  17. J Bacteriol. 2009 Jun;191(11):3431-6 [PMID: 19329642]
  18. J Virol. 2014 Jan;88(2):1162-74 [PMID: 24198424]
  19. Nat Commun. 2017 Dec 5;8(1):1953 [PMID: 29209037]
  20. Virology. 2005 Feb 5;332(1):45-65 [PMID: 15661140]
  21. J Bacteriol. 1979 Jul;139(1):32-8 [PMID: 378958]
  22. Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 [PMID: 9895674]
  23. EMBO J. 1996 Apr 15;15(8):1850-6 [PMID: 8617231]
  24. Curr Opin Virol. 2022 Feb;52:182-191 [PMID: 34952266]
  25. Biochim Biophys Acta. 1973 Sep 27;323(1):87-97 [PMID: 4584483]
  26. Genetics. 1943 Nov;28(6):491-511 [PMID: 17247100]
  27. Trends Microbiol. 2020 Feb;28(2):85-94 [PMID: 31744662]
  28. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  29. J Bacteriol. 2004 Jul;186(14):4818-23 [PMID: 15231815]
  30. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  31. J Mol Biol. 2002 Apr 26;318(2):557-69 [PMID: 12051859]
  32. J Bacteriol. 1994 Aug;176(15):4710-7 [PMID: 8045901]
  33. J Biol Chem. 2013 Oct 18;288(42):30763-30772 [PMID: 24014030]
  34. PLoS Biol. 2021 Nov 16;19(11):e3001424 [PMID: 34784345]
  35. Protein Sci. 2000 May;9(5):956-63 [PMID: 10850805]
  36. J Virol. 1971 Jul;8(1):121-4 [PMID: 5571612]
  37. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  38. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  39. J Mol Biol. 2006 Sep 1;361(5):993-1002 [PMID: 16876823]
  40. FEMS Microbiol Lett. 1998 Nov 1;168(1):119-25 [PMID: 9812372]
  41. Biochimie. 2012 Sep;94(9):1982-9 [PMID: 22659573]
  42. Cell. 1998 Dec 11;95(6):771-8 [PMID: 9865695]
  43. Nat Methods. 2020 Dec;17(12):1214-1221 [PMID: 33257830]
  44. J Phys Chem B. 2010 Jun 17;114(23):7830-43 [PMID: 20496934]
  45. Biochimie. 1998 May-Jun;80(5-6):363-9 [PMID: 9782377]
  46. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  47. Commun Biol. 2020 Nov 19;3(1):691 [PMID: 33214665]
  48. Mol Microbiol. 2011 Mar;79(5):1168-81 [PMID: 21219470]
  49. Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
  50. Curr Biol. 2001 Aug 7;11(15):1168-75 [PMID: 11516947]
  51. Curr Opin Virol. 2022 Apr;53:101208 [PMID: 35180534]
  52. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]

Grants

  1. 214222/Z/18/Z/Wellcome Trust (WT)

MeSH Term

Bacterial Outer Membrane Proteins
Bacteriophage Receptors
Bacteriophages
Escherichia coli
Escherichia coli Proteins
Humans
Lipoproteins
Receptors, Virus
Superinfection
T-Phages

Chemicals

Bacterial Outer Membrane Proteins
Bacteriophage Receptors
Escherichia coli Proteins
Lipoproteins
Receptors, Virus

Word Cloud

Created with Highcharts 10.0.0phageFhuAT5bindinghoststructurebacteriophagecellsuperinfectionexclusionSEviareceptorOMLlploopsproteinsRBPspreventinfectionpb5lipoproteinextracellularlumenplugTonB-dependentkeypoorlyunderstoodstagelifecyclereceptor-bindingreceptorssurfaceleadinginjectiongenomelyticphageslysissecondarycloselyrelatednonproductiveadsorptionlysedfragmentscanmodulationwaysalsounclearpresentcryogenicelectronmicroscopycryo-EMoutermembranecomplexRBPcrystalcomplexedPb5insertsfourdeeplycontactscauseconformationalchangessupportingviewDNAtranslocationoccurchannelsFhuA-Llprevealsperiplasmicbindsnonnativeconformationcausinginwardfoldingtwo"reverse"allosteryinward-foldedoverlapsiteexplainingabolishessuggestingmechanismjammingtransporterssmalllipoproteinsStructuralbasisrecognitiontransporter

Similar Articles

Cited By