Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy.

Simon Heumos, Sandra Dehn, Konstantin Bräutigam, Marius C Codrea, Christian M Schürch, Ulrich M Lauer, Sven Nahnsen, Michael Schindler
Author Information
  1. Simon Heumos: Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.
  2. Sandra Dehn: Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
  3. Konstantin Bräutigam: Institute of Pathology, University of Bern, 3008, Bern, Switzerland.
  4. Marius C Codrea: Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.
  5. Christian M Schürch: Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany.
  6. Ulrich M Lauer: Department of Internal Medicine VIII, Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital Tübingen, 72076, Tübingen, Germany.
  7. Sven Nahnsen: Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.
  8. Michael Schindler: Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany. michael.schindler@med.uni-tuebingen.de.

Abstract

BACKGROUND: Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only.
METHODS: To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer.
RESULTS: For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer.
CONCLUSION: Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.

Keywords

References

  1. BMC Cancer. 2010 May 11;10:193 [PMID: 20459800]
  2. PLoS One. 2014 Jun 18;9(6):e99269 [PMID: 24940735]
  3. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  4. Nat Rev Drug Discov. 2020 Mar;19(3):200-218 [PMID: 31907401]
  5. Nat Genet. 2000 Mar;24(3):236-44 [PMID: 10700175]
  6. Leukemia. 2021 Jan;35(1):119-129 [PMID: 32317776]
  7. J Hematol Oncol. 2021 Oct 30;14(1):180 [PMID: 34717705]
  8. Anticancer Res. 2007 Nov-Dec;27(6C):4345-50 [PMID: 18214042]
  9. Clin Cancer Res. 2015 Sep 1;21(17):3841-52 [PMID: 26048278]
  10. Sci Rep. 2020 Mar 25;10(1):5379 [PMID: 32214151]
  11. Neoplasia. 2019 Oct;21(10):1036-1050 [PMID: 31521051]
  12. Int J Oncol. 2013 Aug;43(2):425-30 [PMID: 23708747]
  13. Invest New Drugs. 2020 Dec;38(6):1807-1814 [PMID: 32472319]
  14. Pathol Oncol Res. 2017 Apr;23(2):409-416 [PMID: 27738793]
  15. EMBO J. 2015 Sep 14;34(18):2307-9 [PMID: 26282791]
  16. Mol Cancer Ther. 2009 Jul;8(7):1878-84 [PMID: 19584232]
  17. J Immunol Res. 2017;2017:6915912 [PMID: 29423418]
  18. Korean J Pathol. 2013 Aug;47(4):340-7 [PMID: 24009629]
  19. Blood Cancer J. 2018 Oct 22;8(11):99 [PMID: 30348967]
  20. BMC Cancer. 2020 Apr 3;20(1):272 [PMID: 32245446]
  21. Nat Biotechnol. 2010 Dec;28(12):1248-50 [PMID: 21139605]
  22. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  23. Nature. 2019 Aug;572(7769):392-396 [PMID: 31367043]
  24. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  25. Cancer Res. 2018 Dec 15;78(24):6807-6817 [PMID: 30355619]
  26. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2482-7 [PMID: 24550271]
  27. Mol Ther Oncolytics. 2022 Feb 01;24:561-576 [PMID: 35229033]
  28. Cancer Res. 2013 Jul 15;73(14):4372-82 [PMID: 23856246]
  29. Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3470-7 [PMID: 16740772]
  30. Urology. 2008 Sep;72(3):603-7 [PMID: 18384848]
  31. mBio. 2021 Aug 31;12(4):e0177021 [PMID: 34399625]
  32. Cancer Res. 2007 Jul 1;67(13):6003-6 [PMID: 17616653]
  33. Cancer Cell. 2020 Oct 12;38(4):454-472 [PMID: 32822573]
  34. Med Oncol. 2011 Dec;28 Suppl 1:S135-41 [PMID: 21116879]
  35. Cancer Sci. 2019 Feb;110(2):805-816 [PMID: 30536996]
  36. Diagn Pathol. 2014 Nov 29;9:221 [PMID: 25432701]
  37. BMC Bioinformatics. 2014 May 29;15:162 [PMID: 24884486]
  38. J Hematol Oncol. 2021 Mar 19;14(1):45 [PMID: 33741032]
  39. BMC Genomics. 2009 Jan 14;10:22 [PMID: 19144180]
  40. Oncoimmunology. 2020 Oct 27;9(1):1838812 [PMID: 33178497]
  41. NPJ Breast Cancer. 2015 Jun 02;1:15002 [PMID: 28721362]
  42. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 [PMID: 30395289]
  43. Biomed Res Int. 2019 Feb 13;2019:6480865 [PMID: 30895194]
  44. J Natl Cancer Inst. 2016 Jan 11;108(5): [PMID: 26755050]
  45. J Natl Cancer Inst. 1998 Jul 15;90(14):1087-94 [PMID: 9672257]
  46. Mol Cancer Ther. 2016 Dec;15(12):2946-2954 [PMID: 27671527]
  47. Oncotarget. 2014 Jun 15;5(11):3728-42 [PMID: 25003721]
  48. Int J Cancer. 2021 Feb 1;148(3):546-559 [PMID: 32790899]
  49. J Biol Chem. 2003 Jul 18;278(29):26474-9 [PMID: 12716912]
  50. Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90 [PMID: 18940857]
  51. Pharmacol Ther. 2019 Jun;198:135-159 [PMID: 30822465]
  52. Cancers (Basel). 2022 Feb 17;14(4): [PMID: 35205776]
  53. Mol Cell Proteomics. 2015 Aug;14(8):2085-102 [PMID: 25991687]
  54. Cancer Res. 2017 Feb 1;77(3):601-612 [PMID: 27923837]
  55. Cell Rep. 2013 Aug 15;4(3):609-20 [PMID: 23933261]
  56. J Exp Clin Cancer Res. 2015 Oct 01;34:108 [PMID: 26427914]
  57. Nat Methods. 2013 Nov;10(11):1046-7 [PMID: 24037243]
  58. J Cancer. 2019 Aug 28;10(21):5223-5233 [PMID: 31602273]
  59. Science. 2018 Mar 23;359(6382):1350-1355 [PMID: 29567705]
  60. Discov Oncol. 2021 Aug 18;12(1):27 [PMID: 35201440]
  61. Nat Biotechnol. 2017 Apr 11;35(4):319-321 [PMID: 28398307]
  62. CA Cancer J Clin. 2020 Mar;70(2):86-104 [PMID: 31944278]
  63. Clin Cancer Res. 2006 Dec 15;12(24):7339-46 [PMID: 17189405]

Grants

  1. EXC 2180-390900677/Germany's Excellence Strategy (iFIT)

Word Cloud

Created with Highcharts 10.0.0cancersurfacecellNCI-60receptorsimmunotherapypanelreceptorcolonrenalImmunotherapyimmunetherapeuticidentifytumorcytometrydatamultiomicsanalysisbiomarkersCD106VCAM1novelMultiomicsBACKGROUND:checkpointinhibitorsICIrevolutionizedtherapyHowevertargetinginhibitoryTPD-1initiatesbroadresponsetumorsalsocausessevereadverseeffectsidealfuturestratifiedinterferecancer-specificonlyMETHODS:candidatesprofiledviaflowresultingexpressionintegratedproteomictranscriptomicdatasetsapplyingsophisticatedmultipleco-inertiaMCIAallowedusprofilesskinbrainkidneybonemarrowderivedlinesentity-specificRESULTS:identifiedCD15CD104CD324CD326CD49fCD24CD26EGFRSSEA-3B3GALT5SSEA-4TMCC1TIM1HAVCR1TRA-1-60RPODXLminingrevealedparticularpromisingimmunotherapeutictargettreatmentCONCLUSION:AltogetherinnovativerepresentshighlyvaluableresourceuncoveringexploiteddiagnosticpurposescontextprofilinguncoverstheranosticsFACSFlowReceptoromeTheranostics

Similar Articles

Cited By