Efficient Suppression of Natural Plasmid-Borne Gene Expression in Carbapenem-Resistant Klebsiella pneumoniae Using a Compact CRISPR Interference System.

Shigang Yao, Dawei Wei, Na Tang, Yuqin Song, Chao Wang, Jie Feng, Gang Zhang
Author Information
  1. Shigang Yao: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  2. Dawei Wei: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  3. Na Tang: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  4. Yuqin Song: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  5. Chao Wang: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  6. Jie Feng: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. ORCID
  7. Gang Zhang: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. ORCID

Abstract

There is an urgent need for efficient tools for genetic manipulation to assess plasmid function in clinical drug-resistant bacterial strains. To address this need, we developed an all-in-one CRISPR interference (CRISPRi) system that easily inhibited the gene expression of a natural multidrug-resistant plasmid in an sequence type 23 (ST23) Klebsiella pneumoniae isolate. We established an integrative CRISPRi system plasmid, pdCas9gRNA, harboring a gene and a single guide RNA (sgRNA) unit under the control of anhydrotetracycline-induced and J23119 promoters, respectively, using a one-step cloning method. This system can repress the single resistance gene , with a >1,000-fold reduction in the meropenem MIC, or simultaneously silence the resistance genes and , with a 16-fold and 8-fold respective reduction in the meropenem and aztreonam MIC on a large natural multidrug-resistant pNK01067-NDM-1 plasmid in an ST23 K. pneumoniae isolate. Furthermore, an sgRNA targeting the promoter region can silence the entire operon, confirming the existence of the operon. We also used this tool to knock down the multicopy resistance gene in pathogenic Escherichia coli, increasing the susceptibility to meropenem. In a word, the all-in-one CRISPRi system can be used for efficient interrogation of indigenous plasmid-borne gene functions, providing a rapid, easy genetic manipulation tool for clinical K. pneumoniae isolates.

Keywords

References

  1. Nat Commun. 2018 Jun 26;9(1):2475 [PMID: 29946130]
  2. mBio. 2018 Nov 20;9(6): [PMID: 30459193]
  3. Appl Environ Microbiol. 2019 May 30;85(12): [PMID: 30979834]
  4. Mol Syst Biol. 2017 May 10;13(5):931 [PMID: 28490437]
  5. Microb Biotechnol. 2020 Jan;13(1):210-221 [PMID: 30793496]
  6. mBio. 2018 Aug 7;9(4): [PMID: 30087173]
  7. Microb Cell Fact. 2018 Apr 5;17(1):56 [PMID: 29622042]
  8. mSphere. 2019 Mar 20;4(2): [PMID: 30894429]
  9. Nat Commun. 2019 Dec 16;10(1):5726 [PMID: 31844051]
  10. Antimicrob Agents Chemother. 2009 Dec;53(12):5046-54 [PMID: 19770275]
  11. Front Microbiol. 2022 Apr 06;13:817494 [PMID: 35464966]
  12. mBio. 2020 Sep 22;11(5): [PMID: 32963003]
  13. mBio. 2022 Feb 8;:e0334021 [PMID: 35130728]
  14. Antimicrob Agents Chemother. 2002 Mar;46(3):659-64 [PMID: 11850245]
  15. Antimicrob Agents Chemother. 2012 Apr;56(4):1693-7 [PMID: 22290943]
  16. Cell Host Microbe. 2021 Jan 13;29(1):107-120.e6 [PMID: 33120116]
  17. J Glob Antimicrob Resist. 2020 Sep;22:349-353 [PMID: 32348902]
  18. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32631827]
  19. Nature. 2014 Mar 6;507(7490):62-7 [PMID: 24476820]
  20. Emerg Microbes Infect. 2021 Dec;10(1):1129-1136 [PMID: 34074225]
  21. J Infect Dis. 2020 Mar 16;221(Suppl 2):S206-S214 [PMID: 32176790]
  22. Metab Eng. 2021 May;65:30-41 [PMID: 33684594]
  23. Cell. 2013 Feb 28;152(5):1173-83 [PMID: 23452860]
  24. EBioMedicine. 2020 Jan;51:102599 [PMID: 31911273]
  25. Appl Environ Microbiol. 2018 Nov 15;84(23): [PMID: 30217854]
  26. J Bacteriol. 2019 Oct 21;201(22): [PMID: 31481541]
  27. Nat Microbiol. 2019 Feb;4(2):244-250 [PMID: 30617347]
  28. Nat Med. 2020 May;26(5):705-711 [PMID: 32284589]
  29. J Antimicrob Chemother. 2009 Apr;63(4):659-67 [PMID: 19233898]
  30. mBio. 2018 Mar 13;9(2): [PMID: 29535199]
  31. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  32. Cell. 2016 Jun 2;165(6):1493-1506 [PMID: 27238023]
  33. J Bacteriol. 2018 Mar 12;200(7): [PMID: 29311279]
  34. mBio. 2019 Feb 26;10(1): [PMID: 30808697]
  35. Clin Microbiol Rev. 2013 Jul;26(3):526-46 [PMID: 23824372]

MeSH Term

Humans
Klebsiella pneumoniae
Meropenem
beta-Lactamases
Clustered Regularly Interspaced Short Palindromic Repeats
Microbial Sensitivity Tests
Anti-Bacterial Agents
Carbapenem-Resistant Enterobacteriaceae
Plasmids
Escherichia coli
Gene Expression
Klebsiella Infections
Bacterial Proteins

Chemicals

Meropenem
beta-Lactamases
Anti-Bacterial Agents
Bacterial Proteins