Systematic evaluation of tumor microenvironment and construction of a machine learning model to predict prognosis and immunotherapy efficacy in triple-negative breast cancer based on data mining and sequencing validation.

Qiheng Gou, Zijian Liu, Yuxin Xie, Yulan Deng, Ji Ma, Jiangping Li, Hong Zheng
Author Information
  1. Qiheng Gou: Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
  2. Zijian Liu: Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
  3. Yuxin Xie: Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
  4. Yulan Deng: Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China.
  5. Ji Ma: Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
  6. Jiangping Li: Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.
  7. Hong Zheng: Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China.

Abstract

The role of the tumor microenvironment (TME) in predicting prognosis and therapeutic efficacy has been demonstrated. Nonetheless, no systematic studies have focused on TME patterns or their function in the effectiveness of immunotherapy in triple-negative breast cancer. We comprehensively estimated the TME infiltration patterns of 491 TNBC patients from four independent cohorts, and three cohorts that received immunotherapy were used for validation. The TME subtypes were comprehensively evaluated based on immune cell infiltration levels in TNBC, and the TRG score was identified and systematically correlated with representative tumor characteristics. We sequenced 80 TNBC samples as an external validation cohort to make our conclusions more convincing. Two TME subtypes were identified and were highly correlated with immune cell infiltration levels and immune-related pathways. More representative TME-related gene (TRG) scores calculated by machine learning could reflect the fundamental characteristics of TME subtypes and predict the efficacy of immunotherapy and the prognosis of TNBC patients. A low TRG score, characterized by activation of immunity and ferroptosis, indicated an activated TME phenotype and better prognosis. A low TRG score showed a better response to immunotherapy in TNBC by TIDE (Tumor Immune Dysfunction and Exclusion) analysis and sensitivity to multiple drugs in GDSC (Genomics of Drug Sensitivity in Cancer) analysis and a significant therapeutic advantage in patients in the three immunotherapy cohorts. TME subtypes played an essential role in assessing the diversity and complexity of the TME in TNBC. The TRG score could be used to evaluate the TME of an individual tumor to enhance our understanding of the TME and guide more effective immunotherapy strategies.

Keywords

References

  1. Clin Cancer Res. 2012 Nov 1;18(21):6001-10 [PMID: 22991413]
  2. Lancet. 2020 Dec 5;396(10265):1817-1828 [PMID: 33278935]
  3. Bioinformatics. 2010 Jun 15;26(12):1572-3 [PMID: 20427518]
  4. JAMA Oncol. 2019 Aug 01;5(8):1205-1214 [PMID: 30973611]
  5. Nature. 2017 Jan 18;541(7637):321-330 [PMID: 28102259]
  6. Signal Transduct Target Ther. 2020 Feb 7;5(1):8 [PMID: 32296030]
  7. Nature. 2018 Feb 22;554(7693):544-548 [PMID: 29443960]
  8. Nat Rev Immunol. 2020 Jan;20(1):7-24 [PMID: 31467405]
  9. Lancet. 2017 Jun 17;389(10087):2430-2442 [PMID: 27939063]
  10. Nat Commun. 2020 Feb 14;11(1):896 [PMID: 32060274]
  11. Nat Rev Clin Oncol. 2020 Apr;17(4):204-232 [PMID: 31792354]
  12. N Engl J Med. 2018 Nov 29;379(22):2108-2121 [PMID: 30345906]
  13. J Mol Biol. 2021 Jan 8;433(1):166596 [PMID: 32693108]
  14. Int J Mol Sci. 2021 Jun 29;22(13): [PMID: 34209703]
  15. Biomark Med. 2018 Jul;12(7):813-820 [PMID: 29902924]
  16. Yi Chuan. 2021 Oct 20;43(10):988-993 [PMID: 34702711]
  17. Cancer Cell. 2021 Jun 14;39(6):845-865.e7 [PMID: 34019806]
  18. Lancet. 2016 May 7;387(10031):1909-20 [PMID: 26952546]
  19. Gut Liver. 2014 Mar;8(2):131-9 [PMID: 24672653]
  20. Nat Med. 2013 Nov;19(11):1423-37 [PMID: 24202395]
  21. Mol Cell. 2020 Jun 18;78(6):1019-1033 [PMID: 32559423]
  22. Phytomedicine. 2015 Oct 15;22(11):1045-54 [PMID: 26407947]
  23. Mol Oncol. 2020 May;14(5):917-932 [PMID: 32175651]
  24. Nat Rev Clin Oncol. 2017 Jul;14(7):399-416 [PMID: 28117416]
  25. Cancer. 2007 May 1;109(9):1721-8 [PMID: 17387718]
  26. BMC Med. 2019 May 9;17(1):90 [PMID: 31068190]
  27. Cell. 2018 Feb 8;172(4):841-856.e16 [PMID: 29395328]
  28. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  29. Ann Oncol. 2016 Aug;27(8):1492-504 [PMID: 27207108]
  30. CA Cancer J Clin. 2020 Jan;70(1):7-30 [PMID: 31912902]
  31. Cell Res. 2017 Jan;27(1):74-95 [PMID: 28025976]
  32. Nat Rev Clin Oncol. 2019 Mar;16(3):151-167 [PMID: 30523282]
  33. Nat Rev Immunol. 2015 Nov;15(11):669-82 [PMID: 26471778]
  34. Lancet Oncol. 2020 Jan;21(1):44-59 [PMID: 31786121]
  35. Cell. 2016 Mar 24;165(1):35-44 [PMID: 26997480]
  36. iScience. 2020 Jul 24;23(7):101302 [PMID: 32629423]
  37. Mol Cancer. 2021 Feb 8;20(1):29 [PMID: 33557837]
  38. JCO Precis Oncol. 2018 Mar 09;2: [PMID: 32913985]
  39. BMC Cancer. 2020 Mar 4;20(1):179 [PMID: 32131780]
  40. Nat Med. 2018 Oct;24(10):1550-1558 [PMID: 30127393]
  41. Nat Biotechnol. 2020 Jun;38(6):675-678 [PMID: 32444850]
  42. Cancer Immunol Immunother. 2021 Jan;70(1):1-18 [PMID: 32617668]
  43. Genome Biol. 2003;4(5):P3 [PMID: 12734009]
  44. Ann Oncol. 2019 Mar 1;30(3):397-404 [PMID: 30475950]
  45. Ann Surg Oncol. 2018 Apr;25(4):937-946 [PMID: 29330719]
  46. Br J Cancer. 2021 Jan;124(2):359-367 [PMID: 32929195]
  47. Cancer Immunol Res. 2014 Apr;2(4):361-70 [PMID: 24764583]
  48. Clin Cancer Res. 2007 Aug 1;13(15 Pt 1):4429-34 [PMID: 17671126]
  49. J Clin Oncol. 2019 Mar 1;37(7):559-569 [PMID: 30650045]
  50. Cell Mol Immunol. 2019 Jan;16(1):6-18 [PMID: 29628498]
  51. Prog Mol Biol Transl Sci. 2019;164:119-188 [PMID: 31383404]
  52. Dis Model Mech. 2017 Apr 1;10(4):349-352 [PMID: 28381596]
  53. Nat Rev Clin Oncol. 2017 Nov;14(11):655-668 [PMID: 28653677]
  54. Nat Commun. 2017 Jan 18;8:14121 [PMID: 28098136]
  55. J Clin Oncol. 2013 Jul 1;31(19):2388-95 [PMID: 23715562]
  56. Nat Genet. 2003 Jul;34(3):267-73 [PMID: 12808457]
  57. Nat Commun. 2018 Jul 24;9(1):2897 [PMID: 30042390]
  58. Clin Cancer Res. 2013 Feb 15;19(4):845-54 [PMID: 23344263]
  59. Aging (Albany NY). 2021 Feb 1;13(4):5485-5505 [PMID: 33536349]
  60. Curr Opin Immunol. 2013 Apr;25(2):268-76 [PMID: 23579075]
  61. Lancet Oncol. 2018 Jan;19(1):40-50 [PMID: 29233559]
  62. Target Oncol. 2020 Aug;15(4):415-428 [PMID: 32514907]
  63. Cancer Immunol Res. 2019 May;7(5):737-750 [PMID: 30842092]
  64. Breast Cancer Res. 2015 Mar 20;17:43 [PMID: 25887482]
  65. Nat Rev Cancer. 2016 Aug 23;16(9):582-98 [PMID: 27550820]
  66. Cell Rep. 2017 Jan 3;18(1):248-262 [PMID: 28052254]
  67. Ann Oncol. 2021 Aug;32(8):983-993 [PMID: 34272041]
  68. Mol Cancer. 2021 Oct 11;20(1):131 [PMID: 34635121]
  69. Clin Transl Immunology. 2021 Oct 26;10(10):e1347 [PMID: 34729183]
  70. Immunity. 2013 Oct 17;39(4):782-95 [PMID: 24138885]
  71. Cell Rep. 2020 Dec 29;33(13):108571 [PMID: 33378668]
  72. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  73. Cancer. 2012 Nov 15;118(22):5463-72 [PMID: 22544643]
  74. N Engl J Med. 2017 Aug 10;377(6):523-533 [PMID: 28578601]
  75. Front Pharmacol. 2018 Aug 15;9:905 [PMID: 30158869]
  76. Breast Cancer Res Treat. 2018 Apr;168(3):625-630 [PMID: 29275435]
  77. Front Immunol. 2022 Jan 07;12:762243 [PMID: 35069534]
  78. Breast Cancer. 2022 May;29(3):468-477 [PMID: 35061208]
  79. Front Oncol. 2021 Oct 21;11:746058 [PMID: 34745969]
  80. Nat Commun. 2021 Oct 6;12(1):5857 [PMID: 34615877]
  81. Genome Biol. 2014 Mar 03;15(3):R47 [PMID: 24580837]
  82. Nat Commun. 2013;4:2612 [PMID: 24113773]
  83. J Stat Softw. 2011 Mar;39(5):1-13 [PMID: 27065756]
  84. Nat Rev Clin Oncol. 2016 Apr;13(4):228-41 [PMID: 26667975]
  85. Breast Cancer Res. 2017 Jun 19;19(1):71 [PMID: 28629479]
  86. Ann Oncol. 2019 Mar 1;30(3):405-411 [PMID: 30475947]
  87. Cell. 2018 Apr 5;173(2):338-354.e15 [PMID: 29625051]
  88. Cancer Lett. 2022 Jan 1;524:121-130 [PMID: 34687790]

Word Cloud

Created with Highcharts 10.0.0TMEimmunotherapyTNBCtumorprognosisTRGefficacysubtypesscoremicroenvironmenttriple-negativebreastcancerinfiltrationpatientscohortsvalidationmachinelearningroletherapeuticpatternscomprehensivelythreeusedbasedimmunecelllevelsidentifiedcorrelatedrepresentativecharacteristicspredictlowbetteranalysismodelpredictingdemonstratedNonethelesssystematicstudiesfocusedfunctioneffectivenessestimated491fourindependentreceivedevaluatedsystematicallysequenced80samplesexternalcohortmakeconclusionsconvincingTwohighlyimmune-relatedpathwaysTME-relatedgenescorescalculatedreflectfundamentalcharacterizedactivationimmunityferroptosisindicatedactivatedphenotypeshowedresponseTIDETumorImmuneDysfunctionExclusionsensitivitymultipledrugsGDSCGenomicsDrugSensitivityCancersignificantadvantageplayedessentialassessingdiversitycomplexityevaluateindividualenhanceunderstandingguideeffectivestrategiesSystematicevaluationconstructiondataminingsequencing

Similar Articles

Cited By