Bioprosthetic Total Artificial Heart Implantation Does Not Induce Chronic Inflammation.

Christophe Peronino, Coralie L Guerin, Peter Ivak, Léa Guyonnet, Richard Chocron, Grégoire Detriché, Christian Latremouille, Maxime Gruest, Aurélien Philippe, Antoine Capel, Yuri Pya, Anne-Céline Martin, Piet Jansen, Nicolas Gendron, Ivan Netuka, David M Smadja
Author Information
  1. Christophe Peronino: From the Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France.
  2. Coralie L Guerin: Institut Curie, Paris, France.
  3. Peter Ivak: Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
  4. Léa Guyonnet: Institut Curie, Paris, France.
  5. Richard Chocron: Université de Paris, PARCC, INSERM and Emergency department, AP-HP, Georges Pompidou European Hospital, Paris, France.
  6. Grégoire Detriché: From the Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France.
  7. Christian Latremouille: Carmat SA, Vélizy-Villacoublay, France.
  8. Maxime Gruest: From the Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France.
  9. Aurélien Philippe: From the Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France.
  10. Antoine Capel: Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
  11. Yuri Pya: National Research Cardiac Surgery Center, Nur-Sultan (Astana), Kazakhstan.
  12. Anne-Céline Martin: Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France.
  13. Piet Jansen: Carmat SA, Vélizy-Villacoublay, France.
  14. Nicolas Gendron: From the Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France. ORCID
  15. Ivan Netuka: Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic. ORCID
  16. David M Smadja: From the Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France. ORCID

Abstract

The Aeson total artificial heart (A-TAH) has been developed for patients at risk of death from biventricular failure. We aimed to assess the inflammatory status in nine subjects implanted with the A-TAH in kinetics over one year. Laboratory assessment of leukocyte counts, inflammatory cytokines assay, and peripheral blood mononuclear cell collection before and after A-TAH implantation. Leukocyte counts were not significantly modulated according to time after A-TAH implantation (coefficient of the linear mixed effect model with 95% CI, -0.05 (-0.71 to -0.61); p = 0.44). We explored inflammatory cytokine after A-TAH and did not observe, at any time, a modified profile compared to pre-implantation values (all p -values > 0.05). Finally, we compared the distribution of circulating immune cell subpopulations identified based on sequential expression patterns for multiple clusters of differentiation. None of the population explored had significant modulation during the 12-month follow-up (all p -values > 0.05). In conclusion, using a cytokine multiplex assay combined with a flow cytometry approach, we demonstrated the absence of inflammatory signals in peripheral blood over a period of 12 months following A-TAH implantation.

References

  1. Ankersmit HJ, Tugulea S, Spanier T, et al.: Activation-induced T-cell death and immune dysfunction after implantation of left-ventricular assist device. Lancet. 354: 550–555, 1999.
  2. Deng MC, Erren M, Tjan TD, et al.: Left ventricular assist system support is associated with persistent inflammation and temporary immunosuppression. Thorac Cardiovasc Surg. 47(suppl 2): 326–331, 1999.
  3. Granja T, Magunia H, Schussel P, Fischer C, Prufer T, Schibilsky D, et al.: Left ventricular assist device implantation causes platelet dysfunction and proinflammatory platelet-neutrophil interaction. Platelets. 33: 132–140, 2022.
  4. Sciaccaluga C, Ghionzoli N, Mandoli GE, et al.: Biomarkers in patients with left ventricular assist device: An insight on current evidence. Biomolecules. 12: 334, 2022.
  5. Woolley JR, Teuteberg JJ, Bermudez CA, et al.: Temporal leukocyte numbers and granulocyte activation in pulsatile and rotary ventricular assist device patients. Artif Organs. 38: 447–455, 2014.
  6. Ait-Oufella H, Libby P, Tedgui A: Anticytokine immune therapy and atherothrombotic cardiovascular risk. Arterioscler Thromb Vasc Biol. 39: 1510–1519, 2019.
  7. Santos-Zas I, Lemarié J, Zlatanova I, et al.: Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun. 12: 1483, 2021.
  8. Han JJ: Aeson-The Carmat total artificial heart is approved for enrollment in the United States. Artif Organs. 45: 445–446, 2021.
  9. Poitier B, Chocron R, Peronino C, et al.: Bioprosthetic total artificial heart in autoregulated mode is biologically hemocompatible: Insights for multimers of von willebrand factor. Arterioscler Thromb Vasc Biol. 42: 470–480, 2022.
  10. Nascimbene A, Dong JF: Hydrodynamic impact on blood: From left ventricular assist devices to artificial hearts. Arterioscler Thromb Vasc Biol. 42: 481–483, 2022.
  11. Richez U, De Castilla H, Guerin CL, et al.: Hemocompatibility and safety of the carmat total artifical heart hybrid membrane. Heliyon. 5: e02914, 2019.
  12. Smadja DM, Saubaméa B, Susen S, et al.: Bioprosthetic total artificial heart induces a profile of acquired hemocompatibility with membranes recellularization. J Am Coll Cardiol. 70: 404–406, 2017.
  13. Carpentier A: Lasker clinical research award. the surprising rise of nonthrombogenic valvular surgery. Nat Med. 13: 1165–1168, 2007.
  14. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 37: 38–44, 2019.
  15. Guerin CL, Guyonnet L, Goudot G, et al.: Multidimensional proteomic approach of endothelial progenitors demonstrate expression of KDR restricted to CD19 cells. Stem Cell Rev Rep. 17: 639–651, 2021.
  16. Netuka I, Pya Y, Bekbossynova M, et al.: Initial bridge to transplant experience with a bioprosthetic autoregulated artificial heart. J Heart Lung Transplant. 39: 1491–1493, 2020.
  17. Soccal PM, Doyle RL, Jani A, et al.: Quantification of cytotoxic T-cell gene transcripts in human lung transplantation. Transplantation. 69: 1923–1927, 2000.
  18. Kimball PM, Flattery M, McDougan F, Kasirajan V: Cellular immunity impaired among patients on left ventricular assist device for 6 months. Ann Thorac Surg. 85: 1656–1661, 2008.
  19. Aburjania N, Hay CM, Sohail MR: Continuous-flow left ventricular assist device systems infections: Current outcomes and management strategies. Ann Cardiothorac Surg. 10: 233–239, 2021.
  20. Leuck AM: Left ventricular assist device driveline infections: Recent advances and future goals. J Thorac Dis. 7: 2151–2157, 2015.
  21. Juraszek A, Smólski M, Kołsut P, et al.: Prevalence and management of driveline infections in mechanical circulatory support - a single center analysis. J Cardiothorac Surg. 16: 216, 2021.
  22. Shive MS, Salloum ML, Anderson JM: Shear stress-induced apoptosis of adherent neutrophils: A mechanism for persistence of cardiovascular device infections. Proc Natl Acad Sci U S A. 97: 6710–6715, 2000.
  23. Shive MS, Brodbeck WG, Colton E, Anderson JM: Shear stress and material surface effects on adherent human monocyte apoptosis. J Biomed Mater Res. 60: 148–158, 2002.
  24. Carpentier A, Latrémouille C, Cholley B, et al.: First clinical use of a bioprosthetic total artificial heart: Report of two cases. Lancet. 386: 1556–1563, 2015.
  25. Latrémouille C, Carpentier A, Leprince P, et al.: A bioprosthetic total artificial heart for end-stage heart failure: Results from a pilot study. J Heart Lung Transplant. 37: 33–37, 2018.
  26. Smadja DM, Susen S, Rauch A, et al.: The carmat bioprosthetic total artificial heart is associated with early hemostatic recovery and no acquired von willebrand syndrome in calves. J Cardiothorac Vasc Anesth. 31: 1595–1602, 2017.
  27. Dhanesha N, Prakash P, Doddapattar P, et al.: Endothelial cell-derived von willebrand factor is the major determinant that mediates von willebrand factor-dependent acute ischemic stroke by promoting postischemic thrombo-inflammation. Arterioscler Thromb Vasc Biol. 36: 1829–1837, 2016.
  28. Smadja DM, Mentzer SJ, Fontenay M, et al.: COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis. 24: 755–788, 2021.
  29. Watanabe A, Amiya E, Hatano M, et al.: Significant impact of left ventricular assist device models on the value of flow-mediated dilation: Effects of LVAD on endothelial function. Heart Vessels. 35: 207–213, 2020.
  30. Cortese F, Ciccone MM, Gesualdo M, et al.: Continuous flow left ventricular assist devices do not worsen endothelial function in subjects with chronic heart failure: A pilot study. ESC Heart Fail. 8: 3587–3593, 2021.
  31. Smadja DM, Chocron R, Rossi E, et al.: Autoregulation of pulsatile bioprosthetic total artificial heart is involved in endothelial homeostasis preservation. Thromb Haemost. 120: 1313–1322, 2020.
  32. d’Alessandro E, Becker C, Bergmeier W, et al.; Scientific Reviewer Committee: Thrombo-inflammation in cardiovascular disease: An expert consensus document from the third maastricht consensus conference on thrombosis. Thromb Haemost. 120: 538–564, 2020.
  33. Date K, Ettelaie C, Maraveyas A: Tissue factor-bearing microparticles and inflammation: A potential mechanism for the development of venous thromboembolism in cancer. J Thromb Haemost. 15: 2289–2299, 2017.
  34. Carlson LA, Maynes EJ, Choi JH, et al.: Characteristics and outcomes of gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices: A systematic review. Artif Organs. 44: 1150–1161, 2020.
  35. Amione-Guerra J, Cruz-Solbes AS, Bhimaraj A, et al.: Anemia after continuous-flow left ventricular assist device implantation: Characteristics and implications. Int J Artif Organs. 40: 481–488, 2017.
  36. Weiss G, Ganz T, Goodnough LT: Anemia of inflammation. Blood. 133: 40–50, 2019.
  37. Tabit CE, Coplan MJ, Chen P, Jeevanandam V, Uriel N, Liao JK: Tumor necrosis factor-α levels and non-surgical bleeding in continuous-flow left ventricular assist devices. J Heart Lung Transplant. 37: 107–115, 2018.
  38. Kim GH, Sayer G, Ransom J, Keebler M, Katz J, Kilic A, et al. Increased bleeding risk in LVAD patients with elevated angiopoetin-2 and TNF-α: Analysis of the PREVENT multicenter study. J Heart Lung Transplant. 37:S71, 2018.

MeSH Term

Humans
Heart Transplantation
Leukocytes, Mononuclear
Heart, Artificial
Heart Failure
Inflammation
Cytokines

Chemicals

Cytokines

Word Cloud

Created with Highcharts 10.0.0A-TAHinflammatoryimplantation-005p0countsassayperipheralbloodcelltimeexploredcytokinecompared-values>AesontotalartificialheartdevelopedpatientsriskdeathbiventricularfailureaimedassessstatusninesubjectsimplantedkineticsoneyearLaboratoryassessmentleukocytecytokinesmononuclearcollectionLeukocytesignificantlymodulatedaccordingcoefficientlinearmixedeffectmodel95%CI7161=44observemodifiedprofilepre-implantationvaluesFinallydistributioncirculatingimmunesubpopulationsidentifiedbasedsequentialexpressionpatternsmultipleclustersdifferentiationNonepopulationsignificantmodulation12-monthfollow-upconclusionusingmultiplexcombinedflowcytometryapproachdemonstratedabsencesignalsperiod12monthsfollowingBioprostheticTotalArtificialHeartImplantationInduceChronicInflammation

Similar Articles

Cited By