The Use of Retinal Microvascular Function and Telomere Length in Age and Blood Pressure Prediction in Individuals with Low Cardiovascular Risk.

Hala Shokr, Victoria Lush, Irundika Hk Dias, Anikó Ekárt, Gustavo De Moraes, Doina Gherghel
Author Information
  1. Hala Shokr: Vascular Research Laboratory, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK. ORCID
  2. Victoria Lush: Computer Science, School of Informatics and Digital Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK.
  3. Irundika Hk Dias: Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
  4. Anikó Ekárt: Computer Science, School of Informatics and Digital Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK.
  5. Gustavo De Moraes: Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA.
  6. Doina Gherghel: Vascular Research Laboratory, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK. ORCID

Abstract

Ageing represents a major risk factor for many pathologies that limit human lifespan, including cardiovascular diseases. Biological ageing is a good biomarker to assess early individual risk for CVD. However, finding good measurements of biological ageing is an ongoing quest. This study aims to assess the use retinal microvascular function, separate or in combination with telomere length, as a predictor for age and systemic blood pressure in individuals with low cardiovascular risk. In all, 123 healthy participants with low cardiovascular risk were recruited and divided into three groups: group 1 (less than 30 years old), group 2 (31-50 years old) and group 3 (over 50 years old). Relative telomere length (RTL), parameters of retinal microvascular function, CVD circulatory markers and blood pressure (BP) were measured in all individuals. Symbolic regression- analysis was used to infer chronological age and systemic BP measurements using either RTL or a combination of RTL and parameters for retinal microvascular function. RTL decreased significantly with age ( = 0.010). There were also age-related differences between the study groups in retinal arterial time to maximum dilation ( = 0.005), maximum constriction ( = 0.007) and maximum constriction percentage ( = 0.010). In the youngest participants, the error between predicted versus actual values for the chronological age were smallest in the case of using both retinal vascular functions only ( = 0.039) or the combination of this parameter with RTL ( = 0.0045). Systolic BP was better predicted by RTL also only in younger individuals ( = 0.043). The assessment of retinal arterial vascular function is a better predictor than RTL for non-modifiable variables such as age, and only in younger individuals. In the same age group, RTL is better than microvascular function when inferring modifiable risk factors for CVDs. In older individuals, the accumulation of physiological and structural biological changes makes such predictions unreliable.

Keywords

References

  1. Circulation. 2007 Jul 3;116(1):3-5 [PMID: 17606853]
  2. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11190-4 [PMID: 7479963]
  3. Acta Ophthalmol. 2018 Dec;96(8):e956-e962 [PMID: 30198216]
  4. Clin Chem. 1972 Jun;18(6):499-502 [PMID: 4337382]
  5. Sci Rep. 2021 Feb 10;11(1):3473 [PMID: 33568754]
  6. Front Genet. 2021 Jan 21;11:630186 [PMID: 33552142]
  7. Ophthalmologe. 2006 Feb;103(2):114-9 [PMID: 16170522]
  8. Ann Transl Med. 2020 Apr;8(8):535 [PMID: 32411758]
  9. Invest Ophthalmol Vis Sci. 2012 Aug 01;53(9):5102-8 [PMID: 22743316]
  10. Invest Ophthalmol Vis Sci. 2013 May 09;54(5):3333-9 [PMID: 23599328]
  11. J Am Coll Cardiol. 2013 Apr 23;61(16):1736-43 [PMID: 23500290]
  12. Aging Cell. 2020 Feb;19(2):e13080 [PMID: 31833194]
  13. Front Med (Lausanne). 2018 Mar 12;5:61 [PMID: 29662881]
  14. Ageing Res Rev. 2013 Mar;12(2):509-19 [PMID: 23333817]
  15. J Am Coll Cardiol. 2020 Mar 3;75(8):919-930 [PMID: 32130928]
  16. Biol Lett. 2017 Dec;13(12): [PMID: 29212750]
  17. Curr Aging Sci. 2014;7(3):161-7 [PMID: 25612739]
  18. J Am Coll Cardiol. 2004 May 19;43(10):1791-6 [PMID: 15145101]
  19. Circulation. 2008 Jan 29;117(4):e25-146 [PMID: 18086926]
  20. Lancet Digit Health. 2020 Oct;2(10):e526-e536 [PMID: 33328047]
  21. Nucleic Acids Res. 2002 May 15;30(10):e47 [PMID: 12000852]
  22. Nucleic Acids Res. 2009 Feb;37(3):e21 [PMID: 19129229]
  23. Exp Gerontol. 2000 Sep;35(6-7):879-96 [PMID: 11053678]
  24. Antioxidants (Basel). 2021 Nov 03;10(11): [PMID: 34829627]
  25. Acta Ophthalmol. 2021 Nov;99(7):e1236-e1242 [PMID: 33576186]
  26. Sci Rep. 2020 Mar 5;10(1):4090 [PMID: 32139725]
  27. Am Heart Hosp J. 2007 Spring;5(2):91-6 [PMID: 17478974]
  28. Biomed Tech (Berl). 2002;47 Suppl 1 Pt 2:678-81 [PMID: 12465272]
  29. Acta Ophthalmol. 2015 Jun;93(4):e266-74 [PMID: 25487686]
  30. Chem Biol Interact. 1998 Apr 24;111-112:1-14 [PMID: 9679538]
  31. Microvasc Res. 2019 Nov;126:103908 [PMID: 31376402]
  32. Sci Rep. 2021 Jul 8;11(1):14136 [PMID: 34238996]
  33. JAMA Netw Open. 2020 May 1;3(5):e204352 [PMID: 32364591]
  34. PLoS One. 2013;8(3):e56564 [PMID: 23483888]
  35. Nat Rev Cardiol. 2013 May;10(5):274-83 [PMID: 23478256]
  36. Front Genet. 2015 Mar 16;6:82 [PMID: 25852738]
  37. Invest Ophthalmol Vis Sci. 2004 May;45(5):1486-92 [PMID: 15111606]
  38. Nutr Metab Cardiovasc Dis. 2013 Mar;23(3):272-8 [PMID: 21824757]
  39. JAMA. 2007 Mar 21;297(11):1253-5 [PMID: 17374819]
  40. Sci Rep. 2020 Mar 17;10(1):4881 [PMID: 32184402]
  41. Eur Heart J. 2013 Oct;34(39):3028-34 [PMID: 24014390]
  42. Mech Ageing Dev. 2007 Nov-Dec;128(11-12):662-71 [PMID: 18022214]
  43. Br J Ophthalmol. 2004 Jul;88(7):887-91 [PMID: 15205231]
  44. Anal Biochem. 1969 Mar;27(3):502-22 [PMID: 4388022]
  45. J Gerontol A Biol Sci Med Sci. 2011 Mar;66(3):312-9 [PMID: 21310811]
  46. Acta Ophthalmol. 2016 Feb;94(1):e35-42 [PMID: 26149453]
  47. Am J Cardiol. 1987 May 29;59(14):91G-94G [PMID: 3591674]
  48. Br J Ophthalmol. 2011 Nov;95(11):1573-6 [PMID: 21362772]
  49. Heart Lung Circ. 2013 Jul;22(7):512-6 [PMID: 23608066]
  50. Nutrients. 2022 Jun 14;14(12): [PMID: 35745192]
  51. Nat Commun. 2020 Jul 14;11(1):3513 [PMID: 32665539]
  52. Clin Chim Acta. 1998 Jul 28;275(2):175-84 [PMID: 9721075]
  53. Sci Adv. 2020 Apr 15;6(16):eaay2631 [PMID: 32426452]
  54. JAMA Ophthalmol. 2013 Jan;131(1):36-43 [PMID: 22964974]

MeSH Term

Adult
Aged
Biomarkers
Blood Pressure
Cardiovascular Diseases
Heart Disease Risk Factors
Humans
Middle Aged
Risk Factors
Telomere

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0RTLage=0retinalriskfunctionindividualsmicrovasculargroupcardiovascularbiologicalcombinationbloodpressureyearsoldBPmaximumbetterageinggoodassessCVDmeasurementsstudytelomerelengthpredictorsystemiclowparticipantsparameterschronologicalusing010alsoarterialconstrictionpredictedvascularyoungerAgeingrepresentsmajorfactormanypathologieslimithumanlifespanincludingdiseasesBiologicalbiomarkerearlyindividualHoweverfindingongoingquestaimsuseseparate123healthyrecruiteddividedthreegroups:1less30231-50350RelativecirculatorymarkersmeasuredSymbolicregression-analysisusedinfereitherdecreasedsignificantlyage-relateddifferencesgroupstimedilation005007percentageyoungesterrorversusactualvaluessmallestcasefunctions039parameter0045Systolic043assessmentnon-modifiablevariablesinferringmodifiablefactorsCVDsolderaccumulationphysiologicalstructuralchangesmakespredictionsunreliableUseRetinalMicrovascularFunctionTelomereLengthAgeBloodPressurePredictionIndividualsLowCardiovascularRiskpredictionregressiontelomeres

Similar Articles

Cited By