Impact of Constraint-Induced Movement Therapy (CIMT) on Functional Ambulation in Stroke Patients-A Systematic Review and Meta-Analysis.

Ravi Shankar Reddy, Kumar Gular, Snehil Dixit, Praveen Kumar Kandakurti, Jaya Shanker Tedla, Ajay Prashad Gautam, Devika Rani Sangadala
Author Information
  1. Ravi Shankar Reddy: Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia. ORCID
  2. Kumar Gular: Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
  3. Snehil Dixit: Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
  4. Praveen Kumar Kandakurti: College of Health Sciences, Gulf Medical University, Ajman 4184, United Arab Emirates.
  5. Jaya Shanker Tedla: Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia. ORCID
  6. Ajay Prashad Gautam: Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
  7. Devika Rani Sangadala: Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.

Abstract

Constraint-induced movement therapy (CIMT) has been delivered in the stroke population to improve lower-extremity functions. However, its efficacy on prime components of functional ambulation, such as gait speed, balance, and cardiovascular outcomes, is ambiguous. The present review aims to delineate the effect of various lower-extremity CIMT (LECIMT) protocols on gait speed, balance, and cardiovascular outcomes. Material and methods: The databases used to collect relevant articles were EBSCO, PubMed, PEDro, Science Direct, Scopus, MEDLINE, CINAHL, and Web of Science. For this analysis, clinical trials involving stroke populations in different stages of recovery, >18 years old, and treated with LECIMT were considered. Only ten studies were included in this review, as they fulfilled the inclusion criteria. The effect of CIMT on gait speed and balance outcomes was accomplished using a random or fixed-effect model. CIMT, when compared to controlled interventions, showed superior or similar effects. The effect of LECIMT on gait speed and balance were non-significant, with mean differences (SMDs) of 0.13 and 4.94 and at 95% confidence intervals (Cis) of (-0.18-0.44) and (-2.48-12.37), respectively. In this meta-analysis, we observed that despite the fact that several trials claimed the efficacy of LECIMT in improving lower-extremity functions, gait speed and balance did not demonstrate a significant effect size favoring LECIMT. Therefore, CIMT treatment protocols should consider the patient's functional requirements, cardinal principles of CIMT, and cardiorespiratory parameters.

Keywords

References

  1. Clin Sci Mol Med. 1977 Sep;53(3):257-69 [PMID: 913049]
  2. J Rehabil Med. 2014 Feb;46(2):132-8 [PMID: 24162795]
  3. Neural Plast. 2021 Feb 1;2021:6664058 [PMID: 33603778]
  4. Gait Posture. 2017 May;54:229-235 [PMID: 28351743]
  5. Lancet Glob Health. 2021 Mar;9(3):e235-e236 [PMID: 33422188]
  6. Arch Phys Med Rehabil. 2002 Dec;83(12):1697-702 [PMID: 12474172]
  7. Arch Phys Med Rehabil. 2003 Dec;84(12):1780-5 [PMID: 14669183]
  8. NeuroRehabilitation. 2017;40(3):345-354 [PMID: 28222556]
  9. J Neurophysiol. 1998 Feb;79(2):1117-23 [PMID: 9463469]
  10. Cerebrovasc Dis. 2004;18(4):283-9 [PMID: 15331874]
  11. Physiother Theory Pract. 2020 Jun;36(6):679-690 [PMID: 29979897]
  12. NeuroRehabilitation. 2018;42(1):29-35 [PMID: 29400671]
  13. Lancet Neurol. 2015 Feb;14(2):224-34 [PMID: 25772900]
  14. J Neurol Phys Ther. 2015 Apr;39(2):95-102 [PMID: 25784587]
  15. Prog Cardiovasc Dis. 2019 Mar - Apr;62(2):140-146 [PMID: 30685470]
  16. Top Stroke Rehabil. 2017 Dec;24(8):555-561 [PMID: 28859603]
  17. Pathophysiology. 2018 Dec;25(4):405-410 [PMID: 30243460]
  18. Stroke. 2016 May;47(5):1201-6 [PMID: 27073239]
  19. Neurorehabil Neural Repair. 2010 Mar-Apr;24(3):213-24 [PMID: 19822722]
  20. Arch Phys Med Rehabil. 2005 Aug;86(8):1552-6 [PMID: 16084807]
  21. Top Stroke Rehabil. 2001 Winter;7(4):1-18 [PMID: 14523755]
  22. Am J Phys Med Rehabil. 2003 Oct;82(10):778-86; quiz 787-9, 823 [PMID: 14508410]
  23. NeuroRehabilitation. 2019;45(2):247-254 [PMID: 31498137]
  24. Neuroepidemiology. 2020;54(2):171-179 [PMID: 32079017]
  25. Expert Rev Neurother. 2007 Oct;7(10):1417-36 [PMID: 17939776]
  26. Physiother Can. 2004 Jun;56(3):171-176 [PMID: 23372280]
  27. Clin Rehabil. 2015 Feb;29(2):135-42 [PMID: 25009199]
  28. J Neuroeng Rehabil. 2006 Sep 29;3:23 [PMID: 17010203]
  29. Stroke. 2019 Nov;50(11):3170-3176 [PMID: 31537194]
  30. Transl Stroke Res. 2013 Oct;4(5):488-99 [PMID: 24323375]
  31. Eur J Phys Rehabil Med. 2018 Jun;54(3):408-418 [PMID: 27575015]
  32. J Phys Ther Sci. 2018 Aug;30(8):1092-1094 [PMID: 30154606]
  33. Nervenarzt. 2003 Apr;74(4):334-42 [PMID: 12707702]
  34. Arch Phys Med Rehabil. 2012 Apr;93(4):669-76 [PMID: 22336102]
  35. Neurorehabil Neural Repair. 2012 May;26(4):318-24 [PMID: 22086903]
  36. Cerebrovasc Dis. 2009;27(6):552-8 [PMID: 19390180]
  37. BMC Neurol. 2012 Jun 22;12:45 [PMID: 22727172]
  38. Circulation. 2004 Apr 27;109(16):2031-41 [PMID: 15117863]
  39. Top Stroke Rehabil. 2012 Nov-Dec;19(6):556-63 [PMID: 23192720]
  40. Neural Regen Res. 2012 Nov 15;7(32):2548-53 [PMID: 25337108]
  41. Int J Stroke. 2017 Jul;12(5):444-450 [PMID: 28697708]
  42. Phys Ther. 2020 Apr 17;100(4):698-707 [PMID: 31899495]
  43. Eur J Neurol. 2012 Apr;19(4):578-86 [PMID: 22040308]
  44. J Rehabil Res Dev. 2005 Nov-Dec;42(6):769-78 [PMID: 16680614]
  45. J Neurol Sci. 1995 May;130(1):59-68 [PMID: 7650532]
  46. J Head Trauma Rehabil. 2010 Sep-Oct;25(5):366-74 [PMID: 20142759]
  47. Disabil Rehabil. 2016 Sep;38(19):1893-9 [PMID: 26728501]
  48. J Phys Ther Sci. 2015 Dec;27(12):3945-6 [PMID: 26834387]
  49. Neuroscience. 2010 Jun 2;167(4):1239-48 [PMID: 20211699]
  50. Gait Posture. 2013 Apr;37(4):627-30 [PMID: 23044410]
  51. Gait Posture. 2009 Apr;29(3):355-9 [PMID: 19211250]
  52. J Rehabil Med. 2006 Sep;38(5):287-94 [PMID: 16931458]
  53. Sci Rep. 2021 Feb 2;11(1):2745 [PMID: 33531533]
  54. Neurology. 2003 Sep 23;61(6):842-4 [PMID: 14504336]
  55. Phys Ther. 1981 Jul;61(7):1041-5 [PMID: 6166017]
  56. Stroke. 1995 Jun;26(6):982-9 [PMID: 7762050]
  57. Dement Neuropsychol. 2009 Oct-Dec;3(4):275-282 [PMID: 29213640]
  58. Restor Neurol Neurosci. 2004;22(3-5):317-36 [PMID: 15502259]
  59. Neurosci Lett. 1998 Jun 26;250(1):5-8 [PMID: 9696052]
  60. Front Neurol. 2021 Mar 23;12:638904 [PMID: 33833730]
  61. Med Decis Making. 2005 Nov-Dec;25(6):646-54 [PMID: 16282215]
  62. Arch Phys Med Rehabil. 2004 Aug;85(8):1377-81 [PMID: 15295770]
  63. Am J Phys Med Rehabil. 2020 Mar;99(3):250-256 [PMID: 31584453]
  64. BMC Neurol. 2021 Jan 27;21(1):38 [PMID: 33504334]
  65. Arch Phys Med Rehabil. 1993 Apr;74(4):347-54 [PMID: 8466415]
  66. J Rehabil Med. 2011 Nov;43(11):1016-9 [PMID: 21915584]
  67. Top Stroke Rehabil. 2005 Winter;12(1):45-57 [PMID: 15736000]
  68. Am J Phys Med Rehabil. 1999 Mar-Apr;78(2):123-30 [PMID: 10088586]
  69. Physiother Theory Pract. 2022 Apr;38(4):534-542 [PMID: 32569492]
  70. Cerebrovasc Dis. 2013;35(1):7-22 [PMID: 23428993]
  71. Bull World Health Organ. 2016 Sep 1;94(9):634-634A [PMID: 27708464]
  72. Clin Rehabil. 2007 Dec;21(12):1075-86 [PMID: 18042603]
  73. Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):460-6 [PMID: 17601803]
  74. J Phys Ther Sci. 2018 Aug;30(8):993-996 [PMID: 30154588]

MeSH Term

Adolescent
Humans
Physical Therapy Modalities
Stroke
Stroke Rehabilitation
Walking
Walking Speed

Word Cloud

Created with Highcharts 10.0.0CIMTgaitspeedbalanceLECIMTlower-extremityeffectstrokefunctionalcardiovascularoutcomesfunctionsefficacyambulationreviewprotocolsSciencetrialsConstraint-inducedmovementtherapydeliveredpopulationimproveHoweverprimecomponentsambiguouspresentaimsdelineatevariousMaterialmethods:databasesusedcollectrelevantarticlesEBSCOPubMedPEDroDirectScopusMEDLINECINAHLWebanalysisclinicalinvolvingpopulationsdifferentstagesrecovery>18yearsoldtreatedconsideredtenstudiesincludedfulfilledinclusioncriteriaaccomplishedusingrandomfixed-effectmodelcomparedcontrolledinterventionsshowedsuperiorsimilareffectsnon-significantmeandifferencesSMDs01349495%confidenceintervalsCis-018-044-248-1237respectivelymeta-analysisobserveddespitefactseveralclaimedimprovingdemonstratesignificantsizefavoringThereforetreatmentconsiderpatient'srequirementscardinalprinciplescardiorespiratoryparametersImpactConstraint-InducedMovementTherapyFunctionalAmbulationStrokePatients-ASystematicReviewMeta-Analysis

Similar Articles

Cited By